
A Combined Capacity Scaling and Local Branching
Approach to Capacitated Multi-commodity Network

Design Problem

Naoto Katayama
Ryutsu Keizai University, Distribution and Logistics Systems, katayama@rku.ac.jp, http://www.rku.ac.jp/∼katayama/

The capacitated multi-commodity network design problem (CMND) represents a generic network design

model for applications used in designing construction and improvements to telecommunication, logistics,

transportation, distribution, and production networks. This paper presents an approach combining capacity

scaling and local branching for CMND. Capacity scaling is an approximate iterative solution approach

for capacitated network problems based on the principle of changing arc capacities that depend on flow

volumes on arcs. Local branching is a method of solving new restricted problems based on an exploration

of solution neighborhoods defined as local branching constraints. Capacity scaling with a strong path flow

based formulation including forcing constraints can produce high-quality solutions within a short period of

time allotted for computation. By combined capacity scaling and local branching, the combined approach

can offer one of the best current solutions compared to previous heuristics for CMND.

Key words : Capacitated Network Design; Capacity Scaling; Local Branching

History :

1. Introduction

The capacitated multi-commodity network design problem (CMND), also known as the capacitated

fixed charge multi-commodity network flow problem, represents a generic network design model

for applications used in designing construction and improvements to telecommunications, logistics,

transportation, distribution, and production networks. For network design problems, many real-

life applications can be found in Magnanti et al. (1986), as well as Powell and Sheffi (1989). The

CMND solution provides the appropriate network design as well as routes of multi-commodity flows

aimed at minimizing total cost, which is the sum of flow costs and fixed costs over the network

with limited arc capacities. CMND is formulated as a mixed integer programming problem. Binary

variables are used to model a network design selecting arcs from a candidate arc set appropriately,

while continuous variables represent the volumes of arc flows on the network.

Several reviews on network design problems and associated methods of identifying solutions are

described in Magnanti and Wong (1984), Wong (1984), Wong (1985), Minoux (1989), Balakrishnan

et al. (1997), Gendron et al. (1997), Crainic (2003), Costa (2005), and Yaghini and Akhavan (2012).

1

Katayama: Combined Capacity Scaling and Local Branching
2

CMND is known as an NP-hard problem (Magnanti and Wong 1984). Many techniques have

been developed to accommodate these problems, such as valid inequalities, relaxation methods,

heuristics, and meta-heuristics.

Polyhedral approaches to CMND have also been developed. Magnanti et al. (1993) proposed

the integer rounding cut-set, as well as three partition and arc residual capacity inequalities, while

Barahona (1996) proposed multi-cut inequalities. Also, Bienstock and Günlük (1996) developed cut-

set, flow-cut-set, and three partition facets. Atamtürk and Rajan (2002) proposed the polyhedron

of single arc-set along with related separation and lifting problems. Chouman et al. (2003) proposed

cover and minimum cardinality inequalities, while Kliewer and Timajev (2005) developed cover

inequalities and local cuts. Costa et al. (2009) developed Benders, metric and cut-set inequalities.

Recently, Chouman et al. (2009) developed flow cover and flow pack inequalities, plus a method

used to generate violated inequalities efficiently.

Relaxation and lower bound approaches have also been devised for solving CMND. Katayama

and Kasugai (1993) presented a dual ascent approach based on integer rounding cut-set inequalities.

Gendron and Crainic (1994, 1996) meanwhile presented linear relaxation and Lagrangian relaxation

problems. Herrmann et al. (1996) proposed an extension method employing a dual ascent algorithm

to address an uncapacitated multi-commodity network design problem. Holmberg and Yuan (2000)

proposed a combination algorithm incorporating a Lagrangian relaxation method and a branch-

and-bound algorithm. Crainic et al. (2001) developed a sub-gradient method employing a bundle

type algorithm.

Heuristics and meta-heuristics designed to identify feasible approximate solutions within a rea-

sonable computation time have also been developed. Gendron and Crainic (1994, 1996) proposed

a resource decomposition heuristic based on a resource-directive decomposition algorithm. In the

last decade, several tabu search heuristics have been created. Crainic et al. (2000) and Zaleta and

Socarrás (2004) proposed a simplex-based tabu search heuristic. Ghamlouche et al. (2003) pro-

posed a cycle-based tabu search heuristic including simplex-based search. Crainic and Gendron

(2002) proposed a cooperative parallel tabu search heuristic, while Crainic et al. (2006) developed

a multilevel cooperative search heuristic. Ghamlouche et al. (2004), Alvarez et al. (2005), and

Crainic and Gendreau (2007) explored a scatter search algorithm and a path relinking algorithm

to CMND. Scatter search and path relinking are related to a tabu search heuristic in the sense that

they provide unifying principles for joining solutions based on generalized path constructions and

by utilizing strategic designs. Meanwhile, Crainic et al. (2004) proposed slope scaling heuristics.

Slope scaling is based on changing flow costs, which depend on arc flow volumes and dual variable

information.

Katayama: Combined Capacity Scaling and Local Branching
3

In the last few years, combined or hybrid approaches characterized by meta-heuristics and a

mixed-integer programming (MIP) solver have been developed. Katayama et al. (2009) proposed

capacity scaling using column generation and row generation techniques. Rodŕıguez-Mart́ın and

Salazar-Gonzáleza (2010) developed a local branching heuristic, which utilizes an MIP solver to

explore neighborhoods. Hewitt et al. (2010) proposed a combined exact and heuristic approach to

search very large neighborhoods by solving restricted problems. Ghamlouche et al. (2011) proposed

learning mechanisms and local search heuristics, while Yaghini and Rahbar (2011) proposed a

hybrid simulated annealing as well as a simplex method.

In many papers, an arc flow based formulation or a path flow based formulation excluding forcing

constraints have been used to address CMND. Since the formulation including forcing constraints is

a large mixed integer programming problem, significant amounts of computation time are required

to solve large and complex problems and their relaxation problems. However, in order to improve

solutions and the lower bound derived from linear relaxation problems, the optimal mean of solving

formulations is to apply forcing constraints. Column generation for path flow variables and cutting

planes for forcing constraints can reduce the problem size and increase solvability of the problem.

This paper presents capacity scaling using column generation and cutting plane techniques for

solving CMND. Capacity scaling is an approximate iterative solution approach for capacitated

network problems based on changing arc capacities, which in turn depend on flow volumes on

arcs. Although capacity scaling produces good solutions within a reasonable computation time in

general, this process may not always yield high-quality solutions. Consequently, local branching is

applied for solutions derived from capacity scaling. Local branching consists of a method of solving

a new problem with the same constraints and objective function as the original problem, but with

the addition of local branching constraints, based on an exploration of solution neighborhoods. A

combined capacity scaling and local branching approach can produce the best solutions compared

to previous approaches found in related literature, for nearly all benchmark problems.

2. Mathematical Formulation

Let G= (N,A) be a directed network with the set of nodes N and the set of directed arcs A. Let

K be the set of commodities on the network. For each commodity k ∈K, let P k be the set of paths

of commodity k, and dk the demand of flow of commodity k from its single origin node to its single

destination node.

The following measures characterize arc (i, j)∈A: fij, the fixed cost of including arc (i, j) in the

network design, ckij, the unit variable flow cost for commodity k flowing on arc (i, j), and Cij, the

limited arc capacity which is shared by all the commodities flowing on the arc.

The formulation of CMND has two types of variables. The first type is a binary design variable,

which is defined as yij = 1 if arc (i, j) is included in the network design, yij = 0 otherwise. The

Katayama: Combined Capacity Scaling and Local Branching
4

second type is a continuous path flow variable, which is defined by xk
p, representing the amount of

the path flow of commodity k flowing on the path p ∈ P k. Let δpij be the constant, δpij = 1 if arc

(i, j) is included in path p, δpij = 0 otherwise.

The path flow based formulation CMNDP of CMND can be expressed as follows:

(CMNDP)

min
∑

(i,j)∈A

∑
k∈K

ckij
∑
p∈Pk

δpijx
k
p +

∑
(i,j)∈A

fijyij (1)

subject to ∑
p∈Pk

xk
p = dk ∀k ∈K, (2)

∑
k∈K

∑
p∈Pk

δpijx
k
p ≤Cijyij ∀(i, j)∈A, (3)

∑
p∈Pk

δpijx
k
p ≤ dkyij ∀(i, j)∈A,k ∈K, (4)

xk
p ≥ 0 ∀p∈ P k, k ∈K, (5)

yij ∈ {0,1} ∀(i, j)∈A. (6)

The objective function (1) is the total cost, that is the sum of variable flow costs of commodities

plus the sum of fixed costs in a given network design, and should be minimized. Constraints (2)

consist of flow conservation equations, which represent the fact that the sum of path flows of

commodity k is equal to the demand. Constraints (3) provide the capacity constraints, which

prohibit flowing if the arc is excluded, yij = 0, and allow for flow up to the arc capacity if the

arc is included, yij = 1. Constraints (4) provide the forcing constraints, which prohibit flowing of

commodity k if the arc is excluded, and allow for flow up to the demand if the arc is included.

Let xk
ij be the arc flow variable for commodity k flowing on arc (i, j). Let N+

n be the set of

outward nodes from node n, and N−
n be the set of inward nodes into node n. The arc flow based

formulation CMNDA of CMND can be expressed as follows:

(CMNDA)

min
∑

(i,j)∈A

∑
k∈K

ckijx
k
ij +

∑
(i,j)∈A

fijyij (7)

subject to ∑
i∈N+

n

xk
in −

∑
j∈N−

n

xk
nj =

−dk if n=Ok

dk if n=Dk

0 otherwise

∀n∈N, k ∈K, (8)

∑
k∈K

xk
ij ≤Cijyij ∀(i, j)∈A, (9)

xk
ij ≤ dkyij ∀(i, j)∈A,k ∈K, (10)

Katayama: Combined Capacity Scaling and Local Branching
5

Figure 1 X-y Correlations in a Linear Relaxation Problem

CijC ′
ij = X̂ij

1

0

yij

Xij

linear relaxation

Figure 2 Changing Capacity

C ′
ijX̃ijλX̃ij +(1−λ)C ′

ij

1

0

yij

Xij

xk
ij ≥ 0 ∀(i, j)∈A,k ∈K, (11)

yij ∈ {0,1} ∀(i, j)∈A. (12)

Constraints (8) are the flow conservation equations, which represent relations between the sum of

arc flows into node n and the sum of arc flows out from node n for commodity k. Constraints (9)

are the capacity constraints, and constraints (10) are the forcing constraints.

In this paper, capacity scaling using column generation is applied for path flow based formulation

CMNDP, and local branching is applied to arc flow based formulation CMNDA.

3. Capacity Scaling

Capacity scaling represents an approximate iterative solution approach for capacitated network

problems based on changing arc capacities, which depend on flow volumes on arcs (Pochet and

Vyve 2004). When solving the linear relaxation problem of CMNDP, the capacity constraints (3),

which define a variable upper bound on design variable yij for arc flow Xij(=
∑

k∈K

∑
p∈Pk δ

p
ijx

k
p),

is approximated by a linear function (Figure 1). At the linear relaxation problem, the optimal

design variables may not necessarily comprise a binary, but a decimal fraction in a solution and

arc capacities of the right hand of equation (3) are underestimated all over the domain. As a

consequence, a relaxation solution may not be an approximation for finding a good feasible binary

solution for CMND.

If the optimal arc flow X̂ of CMNDP is found, we should change capacity C to C ′, which is

equal to X̂ for each arc. Then we solve the linear relaxation problem with capacity C ′ again. As

the result, either 0 or 1 solutions for all design variables can be obtained. CMNDP associated with

all fixed design variables is reduced to a multi-commodity flow problem. By solving the multi-

commodity flow problem, we obtain the optimal objective value of CMNDP. It is a given that

finding the optimal flow of CMNDP is extremely difficult, yet identifying the optimal flow is our

main purpose. Consequently, if a near-optimal flow can be identified, C ′ may be estimated and

Katayama: Combined Capacity Scaling and Local Branching
6

a good approximate solution could possibly be derived from it. On the other hand, by changing

capacity C ′ a little bit at a time, we can gradually identify near-optimal flow.

Capacity scaling starts by solving the linear relaxation problem of CMNDP associated with

C l(=C ′) as a substitution for C at the iteration l. Initially we set C1 :=C. The linear relaxation

problem LR(C l) with capacity C l at iteration l can be expressed as follows:

(LR(C l))

min
∑

(i,j)∈A

∑
k∈K

ckij
∑
p∈Pk

δpijx
k
p +

∑
(i,j)∈A

fijyij (13)

subject to ∑
p∈Pk

xk
p = dk ∀k ∈K, (14)

∑
k∈K

∑
p∈Pk

δpijx
k
p ≤C l

ijyij ∀(i, j)∈A, (15)

∑
p∈Pk

δpijx
k
p ≤ dkyij ∀(i, j)∈A,k ∈K, (16)

xk
p ≥ 0 ∀p∈ P k, k ∈K, (17)

0≤ yij ≤Cij/C
l
ij ∀(i, j)∈A. (18)

In the right-hand side of the constraint (15), Cij is replaced for C l
ij, and in the right-hand side of

the constraint (18), the upper bound 1 is replaced for Cij/C
l
ij to enable arc flow up to its original

capacity Cij.

Let X̃ij be the optimal arc flow on arc (i, j) of LR(C l). At the next iteration, we substitute

C l
ij with λX̃ij + (1− λ)C l−1

ij (Figure 2), where λ(0≤ λ≤ 1) is a smoothing parameter designed to

prevent rapid changes. If all design variables converge to zero or one in the solution of LR(C l)

at some point of iteration, then we solve the multi-commodity network flow problem associated

with all fixed design variables set to these convergent values, and both a feasible solution and

an upper bound can be identified for the CMNDP. Obtaining convergent solutions may require

numerous iterations; otherwise some design variables may not converge. Consequently, when most

design variables converge to zero or to one by a threshold value ϵ, and the number of free design

variables, which are not converged variables, is less than or equal to a branch-and-bound execution

parameter B, the branch-and-bound algorithm of an MIP solver is applied for CMNDP associated

with non-convergent free variables. Here, the upper bound may be identified. Let ∆B be subtracted

from B. After the branch-and-bound algorithm, B is reduced by ∆B, until B <Bmin. The capacity

scaling stops when the iteration number exceeds the minimum iteration number ITEmin and an

upper bound UB has been identified. Otherwise, if the iteration number exceeds the maximum

iteration number ITEmax, capacity scaling also stops. An outline of capacity scaling proceeds as

Algorithm 1.

Katayama: Combined Capacity Scaling and Local Branching
7

Algorithm 1: Capacity Scaling

Set λ, ϵ, ITEmin, ITEmax, B, Bmin, and ∆B;

C1 :=C; UB :=∞; l := 1;

repeat
Solve LR(C l) by Column Generation and Cutting Plane;

Obtain the arc flow solution X̃ and the design solution ỹ of LR(C l);

for (i, j)∈A do
if ỹij < ϵ then yij = 0;

else if ỹij > 1− ϵ then yij = 1;

else free;
end

if the number of free variables of y is less than B then
Solve CMNDP associated with the restricted design variable y by an MIP solver;

Get the objective function value ZCMNDP and the design solution ȳ of CMNDP;

B :=max{Bmin,B−∆B};

if ZCMNDP <UB then UB :=ZCMNDP ;
l := l+1;

for (i, j)∈A do

C l
ij := λX̃ij +(1−λ)C l−1

ij ;

end
until If l≥ ITEmin and UB ̸=∞, or l≥ ITEmax

4. Column Generation and Cutting Plane

In capacity scaling, the linear programming problem LR(C l) is solved iteratively. Since LR(C l)

has an exponential number of path flow variables and the forcing constraints of the number of

O(|K||A|), all variables and constraints should not be considered at large problems explicitly. In

order to solve large problems efficiently, column generation is applied for path flow variables, while

cutting plane is applied for forcing constraints.

For each commodity k, let P̃ k ⊂ P k be the initial set of paths. ÃK ⊂A×K is the set of index of

generated forcing constraints. Initially, ÃK := ϕ and violated forcing constraints by solutions are

generated by cutting plane.

We reformulate the restricted problem, which has restricted path sets P̃ and restricted forcing

constraint set ÃK for LR(C l), as follows in RLR(C l, P̃ ,ÃK):

(RLR(C l, P̃ ,ÃK))

min
∑

(i,j)∈A

∑
k∈K

ckij
∑
p∈P̃k

δpijx
k
p +

∑
(i,j)∈A

fijyij (19)

Katayama: Combined Capacity Scaling and Local Branching
8

subject to ∑
p∈P̃k

xk
p = dk ∀k ∈K, (20)

∑
k∈K

∑
p∈P̃k

δpijx
k
p ≤C l

ijyij ∀(i, j)∈A, (21)

∑
p∈P̃k

δpijx
k
p ≤ dkyij ∀(i, j, k)∈ ÃK, (22)

xk
p ≥ 0 ∀p∈ P̃ k, k ∈K, (23)

0≤ yij ≤Cij/C
l
ij ∀(i, j)∈A. (24)

Let s be the dual variable for the constraint (20), u(≥ 0) for the constraint (21), and w(≥ 0) for the

constraint (22). If (i, j, k) /∈ ÃK, we assume that wk
ij = 0. By solving RLR(C l, P̃ ,ÃK) optimally, we

get the optimal dual solution (s,u,w). The reduced cost of path flow variable xk
p is represented by:∑

(i,j)∈A

(ckij +uij +wk
ij)δ

p
ij − sk. (25)

A pricing problem is used for generating new path flow variables. The pricing problem of

RLR(C l, P̃ ,ÃK) is disjointed for each commodity k, from which point it can be solved separately.

The separated pricing problem PPk for commodity k is expressed as follows:

(PPk)

zk =min
∑
p∈Pk

∑
(i,j)∈A

(ckij +uij +wk
ij)δ

p
ijx

k
p (26)

subject to ∑
p∈Pk

xk
p = dk, (27)

xk
p ≥ 0 ∀p∈ P k. (28)

Since PPk is the shortest path problem associated with nonnegative arc length ckij + uij +wk
ij, it

can be solved efficiently by Dijkstra’s algorithm. Let p̂ be the optimal path of PPk and zk be the

length of p̂ for commodity k. If zk < sk, then the path flow variable xk
p̂ corresponding to the optimal

path p̂ exhibits negative reduced cost. Then path p̂ is added to P̃ k, and the new variable xk
p̂ is

generated as a new column.

After RLR(C l, P̃ ,ÃK) is solved optimally, violated forcing constraints by the solution of

RLR(C l, P̃ ,ÃK) are generated. Let x̂ be the optimal path flow and ŷ the optimal design solution of

RLR(C l, P̃ ,ÃK). If
∑

p∈P̃k δ
p
ijx̂

k
p >dkŷij, this forcing constraint is violated and then (i, j, k) is added

to ÃK. When a cutting plane is applied for RLR(C l, P̃ ,ÃK), new violated forcing constraints may

be generated. In such cases, we repeat to solve RLR(C l, P̃ ,ÃK) by column generation, until no

Katayama: Combined Capacity Scaling and Local Branching
9

Algorithm 2: Column Generation and Cutting Plane

Set P̃ and ÃK := ϕ;

repeat
repeat

Solve RLR(C l, P̃ , ÃK) by an MIP solver;

Get the optimal dual solution (s,u,w) of RLR(C l, P̃ , ÃK);

for k ∈K do
Solve PPk;

Get the shortest path p̂ and the shortest path length zk;

if zk < sk then p̂ is added to P̃ k and generate path variable xk
p̂;

end
until no path variable is generated

Get the optimal path flow x̂ and the optimal design solution ŷ of RLR(C l, P̃ , ÃK);

for k ∈K do
for (i, j)∈A do

if
∑

p∈P̃k δ
p
ijx̂

k
p >dkŷij then (i, j, k) is added to ÃK;

end
end

until no violated forcing constraint is generated

violated forcing constraint is generated. When no new path, no path flow variable and no forcing

constraint are generated, LR(C l) is solved optimally, and the optimal solution of LR(C l) is the last

solution of RLR(C l, P̃ ,ÃK). The algorithm of column generation and cutting plane is summarized

in Algorithm 2.

In algorithm 1, CMNDP must be solved when the number of free design variables is less than

or equal to B. Since solving this problem optimally is difficult, even if it has restricted design

variables, we solve CMNDP associated with P̃ instead of P as the path set, and ÃK instead of A

and K as the forcing constraint set. Furthermore, if some upper bound UB of CMNDP has been

identified, we add ZCMNDP < UB to CMNDP as a constraint, where ZCMNDP is the objective

function value of CMNDP. Let this restricted problem be CMNDP(P̃ , ÃK). CMNDP(P̃ , ÃK) can

be solved comparatively easily.

5. Local Branching

Although capacity scaling may produce good solutions within a reasonable computation time in

general, the process does not always yield high-quality solutions. Consequently, local branching

(Fischetti and Lodi 2003) is applied to solutions derived from capacity scaling. Local branching is a

method used to solve a new restricted problem based on an exploration of solution neighborhoods

defined by local branching constraints.

Katayama: Combined Capacity Scaling and Local Branching
10

Algorithm 3: Local Branching

Set ȳ and UB by Capacity Scaling;

Add the equation (29) and (30) to CMNDA;

repeat
Solve CMNDA within T ;

if a feasible solution of CMNDA is found then
Obtain the upper bound ZCMNDA and the feasible design solution ȳ′ of CMNDA;

Remove the equation (29) and add the equation (31) to CMNDA;

if ZCMNDA <UB then
UB :=ZCMNDA and ȳ := ȳ′;

Add the equation (29) and (30) to CMNDA;
else M :=M/∆M ;

until M <Mmin

Given the feasible design solution ȳ derived from capacity scaling and a neighborhood size

parameter M(> 0), additional local branching constraints are as follows:∑
(i,j)∈A|ȳij=1

(1− yij)+
∑

(i,j)∈A|ȳij=0

yij ≤M, (29)

∑
(i,j)∈A|ȳij=1

(1− yij)+
∑

(i,j)∈A|ȳij=0

yij > 1. (30)

The first branching constraint includes the domain of M − OPT neighborhood of ȳ, while the

second branching constraint excludes the current solution.

Local branching is applied for CMNDA. The feasible design solution ȳ of CMNDP is also clearly

that of CMNDA. The reason for using CMNDA instead of CMNDP(P̃ , ÃK) is that there is a

possibility that the optimal path set of CMNDP is not included in paths of the restricted path set

of CMNDP(P̃ , ÃK).

The branching constraint (29) and (30) for ȳ is added to CMNDA, and we solve the added

problem by an MIP solver. Since identifying an optimal solution for CMNDA is difficult, we set a

computation time limit T to solve CMNDA. If a better feasible solution ȳ′ is found within T , then

it becomes the new incumbent as ȳ := ȳ′. At this incumbent, we solve the problem such that the

constraint (29) is replaced by the following constraint:

∑
(i,j)∈A|ȳij=1

(1− yij)+
∑

(i,j)∈A|ȳij=0

yij >M +1. (31)

If a better solution cannot be found, the neighborhood size parameter M is reduced to M/∆M

(∆M > 1) until M <Mmin.

Katayama: Combined Capacity Scaling and Local Branching
11

6. Computational Experiments

Experiments have been performed to evaluate the performance of the combined capacity scaling

and local branching approach proposed in this paper. The results of the combined approach are

compared to optimal values or lower bounds by an MIP solver, also compared to the results of local

branching (Rodŕıguez-Mart́ın and Salazar-Gonzáleza 2010), IP search (Hewitt et al. 2010), MIP

tabu search (Chouman and Crainic 2010), cooperative parallel tabu search (Crainic and Gendron

2002) and cycle-based tabu search (Ghamlouche et al. 2003). To ensure comparisons, the same

two sets of problem instances as used in Gendron and Crainic (1996) are employed. The detailed

description of these problem instances is given in Crainic et al. (2001).

The first set of problem instances, denoted as ”C,” consists of 43 instances characterized by the

number of nodes, arcs, and commodities. In the experiments, 37 instances in C-category problems

are used, because the first six instances are trivial problems. Two letters are used to characterize

the fixed cost level ”F” for high, and ”V” for low relative to flow cost, and the capacity level ”T”

for tight and ”L” for loose relative to total demand.

The second set of problem instances, denoted as ”R,” consists of 153 instances divided into 18

groups ranging from r1 to r18. In the experiments, 81 instances, of which the number of nodes is

20, are used, because the instances in the first 9 groups from r1 to r9 are trivial problems. They

are characterized by three fixed cost levels, ”F01,” ”F05,” and ”F10,” and three capacity levels,

”C1,” ”C2,” and ”C8.” If the ”F” value is small, the fixed cost is low, and if the ”F” value is large,

the fixed cost is high relative to flow cost. If the ”C” value is small, the arc capacity is loose; if the

”C” value is large, the arc capacity is tight relatively to total demand.

The experiments were performed on PCs with Pentium i7 CPU 3.4GHz with four cores and

16GBytes RAM. The computer code was written in C++, compiled on Ubuntu 11 and CPLEX

12. An MIP solver by ILOG was used for solving linear programming problems and mixed integer

programming problems. In order to assess solution quality relative to optimal values or lower

bounds, all instances were solved by the branch-and-bound algorithm of CPLEX, and a limit

of 30 hours of computation time was imposed for each instance. If the problem could not be

solved optimally within the computation time limit, the lower bound found by the branch-and-

bound algorithm was used instead of the optimal value. The smoothing parameter λ was calibrated

from 0.025 to 0.250, and the neighborhood size parameter M and the time limit T were tested

combinations 10-1000 seconds and 20-2000 seconds. We set the parameters as ϵ=0.01, B = 150,

∆B =Bmin = 10, ∆M = 2, Mmin = 1, ITEmin = 50, and ITEmax = 1000.

Table 1 displays the average gaps of the results for C-category problems. The average gaps are

relative to the optimal value or the lower bound by CPLEX for the upper bound by each heuristic.

Column LBR is the results by local branching, IPS by IP search, and MIP by MIP tabu search

Katayama: Combined Capacity Scaling and Local Branching
12

Table 1 Average Gap for C-Category Problems(%)

LBR IPS MIP CAP 10-1000 20-2000
3.28 1.86 1.04 0.95 0.51 0.43

respectively. Column CAP is the result by the capacity scaling heuristic excluding local branching.

Columns 10-1000 and 20-2000 are the results of the combined approaches, and the first number

indicates M and the second number indicates T . The average gap of MIP tabu search, which is

the best result among four previous heuristics, is 1.04%. The average gap of the capacity scaling

heuristic is 0.95%, and it is less than that of MIP tabu search. The average gaps of the combined

approaches are 0.51% and 0.43%, and these are only about half of that of MIP tabu search.

Table 2 displays the detailed results for C-category problems. Column N/A/K/FC indicates the

number of nodes, arcs, commodities, the fixed cost level, and the capacity level. Column OPT/LB

corresponds to the optimal value or the lower bound by CPLEX. ”O” indicates that the optimal

value is found, while ”L” indicates that the numerical value is the lower bound. A numerical value

in bold type is the optimal value, while a numerical value in italic type is the best upper bound

except the optimal value. Local branching is identified optimal solutions for nine instances out of

37 instances, conduct IP search for six instances, and utilize MIP tabu search for seven instances

respectively. Meanwhile, the capacity scaling heuristic find the optimal solutions for six instances

and both of the two combined approaches find for 21 instances. Additionally, the combined approach

20-2000 is used to identify the new best upper bounds for all of the 16 instances to the exclusion

of the instances of which the optimal values are found. This means that the combined approach

can help to identify the best solutions for the all instances of C-category problems.

Table 3 displays the average computation times in CPU seconds for four previous heuristics, as

well as capacity scaling heuristic and combined approaches. These computation times for four pre-

vious heuristics are reported in the papers written about them. Due to the fact that different CPUs

are used, these computation times cannot be compared directly. However, compared to previous

heuristics, the average time required for computation by the capacity scaling heuristic is relatively

short; e.g. 456.8 seconds, which is almost the same as the time level by local branching or IP search.

The combined approaches can be solved within a reasonable average time for computation, such

as 3180.7 or 7011.4 seconds, and the latter is the same as the time level by MIP tabu search. Table

4 shows the detailed computation times for instances of C-category problems.

Table 5 displays the average gaps of the results for R-category problems. Column CPT is the

results by cooperative parallel tabu search and CYC by cycle-based tabu search. Although R-

category problems are solved by path relinking and MIP tabu search, these average gaps cannot

be listed here, because no detailed results are reported in the papers on these topics, and the

gaps between them are a comparison between their upper bounds and upper bounds by CPLEX,

Katayama: Combined Capacity Scaling and Local Branching
13

Table 2 Results for C-Category Problems

N/A/K/FC OPT/LB LBR IPS MIP CAP 10-1000 20-2000
100/400/010/VL 28423.0O 28423 28423 28423 28426.0 28423.0 28423.0
100/400/010/FL 23949.0O 24690 23949 24161 24459.0 23949.0 23949.0
100/400/010/FT 63066.2L 67357 65885 67233 68410.0 64207.0 63753.0
100/400/030/VT 384802.0O 384809 384836 384940 384809.0 384802.0 384802.0
100/400/030/FL 49018.0O 49872 49694 49682 49588.0 49018.0 49018.0
100/400/030/FT 132128.9L 141633 141365 144349 142191.0 138152.0 136250.0
20/230/040/VL 423848.0O 423848 424385 423848 423848.0 423848.0 423848.0
20/230/040/VT 371475.0O 371475 371779 371475 371906.0 371475.0 371475.0
20/230/040/FT 643036.0O 643036 643187 643538 643649.0 643036.0 643036.0
20/230/200/VL 94213.0O 95295 95097 94218 94218.0 94213.0 94213.0
20/230/200/FL 137642.3O 143446 141253 138491 137702.0 137642.3 137642.3
20/230/200/VT 97914.0O 98039 99410 98612 97968.0 97914.0 97914.0
20/230/200/FT 135380.1L 141128 140273 136309 136265.0 136031.0 135866.5
20/300/040/VL 429398.0O 429398 429398 429398 429398.0 429398.0 429398.0
20/300/040/FL 586077.0O 586077 586077 588464 587512.0 586077.0 586077.0
20/300/040/VT 464509.0O 464509 464509 464509 464509.0 464509.0 464509.0
20/300/040/FT 604198.0O 604198 604198 604198 604198.0 604198.0 604198.0
20/300/200/VL 74753.2L 76375 75319 75045 74840.0 74811.0 74811.0
20/300/200/FL 113862.3L 119142.8 117543 116259 115801.0 115748.0 115539.0
20/300/200/VT 74991.0O 76167.5 76198 74995 74995.0 74991.0 74991.0
20/300/200/FT 106671.6L 109808 110344 109164 107315.0 107315.0 107102.0
30/520/100/VL 53958.0O 54026 54113 54008 53976.0 53958.0 53958.0
30/520/100/FL 93569.5L 96255 94388 93967 94201.0 93967.0 93967.0
30/520/100/VT 52046.0O 52129 52174 52156 52248.0 52046.0 52046.0
30/520/100/FT 96260.3L 101102 98883 97490 97833.0 97385.0 97107.0
30/520/400/VL 112646.8L 114367.4 114042 112927 112786.7 112774.4 112774.4
30/520/400/FL 147790.1L 157725.5 154218 149920 149486.0 149423.0 149335.4
30/520/400/VT 114640.5O 115240 114922 114664 114640.5 114640.5 114640.5
30/520/400/FT 150685.0L 168561 154606 152929 152629.8 152575.8 152510.6
30/700/100/VL 47603.0O 47603 47612 47603 47603.0 47603.0 47603.0
30/700/100/FL 59612.3L 60272 60700 60184 60067.0 59958.0 59958.0
30/700/100/VT 45871.5O 45905 46046 45880 46070.0 45871.5 45871.5
30/700/100/FT 54904.0O 55104 55609 54926 55164.0 54904.0 54904.0
30/700/400/VL 97188.5L 103787 98718 97982 97900.7 97875.0 97875.0
30/700/400/FL 131689.6L 169759.7 152576 135109 134723.3 134619.5 134589.8
30/700/400/VT 94508.1L 96680 96168 95781 95267.4 95249.6 95249.6
30/700/400/FT 128242.8L 144925.5 131629 130856 129909.6 129909.6 129909.6

Table 3 Average Computation Time for C-Category Problems(Seconds)

LBR IPS MIP CAP 10-1000 20-2000
574.6 408.1 6958.6 456.8 3180.7 7011.4

instead of lower bounds. The average gap of cooperative parallel tabu search is 9.46%, while the

average gap of cycle-based tabu search is 5.74%. In contrast, the average gap of the capacity scaling

heuristic excluding the local branch is 0.59% and those of the combined approaches stand at just

Katayama: Combined Capacity Scaling and Local Branching
14

Table 4 Computation Time for C-Category Problems(Seconds)

N/A/K/FC LBR IPS MIP CAP 10-1000 20-2000
100/400/010/VL 547 35 49 0.4 1.9 2.3
100/400/010/FL 600 9 109 23.2 106.3 109.8
100/400/010/FT 600 813 918 11.8 2735.5 12978.9
100/400/030/VT 600 330 85 1.5 1503.0 2106.0
100/400/030/FL 600 886 2068 167.0 863.5 2643.2
100/400/030/FT 600 888 145 11.8 11027.8 24434.2
20/230/040/VL 328 4 116 0.4 1.2 1.1
20/230/040/VT 440 41 37 0.6 3.1 3.8
20/230/040/FT 600 45 63 0.6 14.6 10.8
20/230/200/VL 600 822 8328 104.2 3060.3 6538.8
20/230/200/FL 600 691 15006 253.7 4408.9 8899.1
20/230/200/VT 600 821 3965 67.7 2160.8 2894.8
20/230/200/FT 600 156 835 263.1 4537.9 11394.2
20/300/040/VL 146 19 83 0.4 1.2 0.9
20/300/040/FL 600 29 46 1.2 8.3 10.3
20/300/040/VT 600 24 161 0.6 3.9 3.7
20/300/040/FT 600 68 35 0.5 4.4 3.8
20/300/200/VL 600 802 4476 100.7 5047.8 9157.1
20/300/200/FL 600 686 9109 349.8 7768.8 8582.9
20/300/200/VT 600 388 1913 65.2 2157.9 2560.2
20/300/200/FT 600 396 542 257.6 3798.2 8239.3
30/520/100/VL 600 218 2415 7.1 672.5 1669.1
30/520/100/FL 600 226 2925 150.0 3266.4 6582.8
30/520/100/VT 600 455 2521 6.6 2004.0 4064.4
30/520/100/FT 600 815 4161 4992.4 4801.5 18076.9
30/520/400/VL 600 394 22797 95.4 5916.8 10474.8
30/520/400/FL 600 750 5769 1183.7 3386.7 18046.1
30/520/400/VT 600 621 38793 53.6 3725.8 8930.4
30/520/400/FT 600 466 8556 357.7 5148.7 15049.4
30/700/100/VL 600 32 3938 4.1 64.1 77.1
30/700/100/FL 600 741 5650 228.4 2888.3 6960.5
30/700/100/VT 600 371 4263 9.0 5559.1 8103.7
30/700/100/FT 600 387 3018 25.9 4455.9 7911.4
30/700/400/VL 600 222 35241 466.0 4726.9 10045.9
30/700/400/FL 600 860 21429 2115.0 7311.7 15460.7
30/700/400/VT 600 365 15372 1569.6 6376.3 11604.0
30/700/400/FT 600 225 32531 3955.4 8164.6 15789.0

Table 5 Average Gap for R-Category Problems(%)

CPT CYC CAP 10-1000 20-2000
9.46 5.74 0.59 0.19 0.17

0.19% and 0.17%. The gaps of the proposed approaches are very small relative to those reported

in the two previous heuristics.

Table 6 shows the average gaps for the results of proposed approaches and two previous heuristics,

according to the fixed cost level and the capacity level of R-category problems. The gaps by cycle-

Katayama: Combined Capacity Scaling and Local Branching
15

Table 6 Gap Distribution According to Fixed Cost and Capacity Level, R-Category Problems(%)

Fixed Cost Capacity CPT CYC CAP 10-1000 20-2000
C1 3.25 2.79 0.03 0.00 0.00

F01 C2 2.34 2.53 0.04 0.00 0.00
C8 2.86 2.98 0.39 0.06 0.06
C1 12.52 6.25 0.34 0.00 0.00

F05 C2 10.87 6.72 0.58 0.30 0.29
C8 5.87 6.77 0.85 0.16 0.13
C1 23.59 7.46 1.00 0.34 0.31

F10 C2 16.26 8.49 0.95 0.45 0.43
C8 7.59 7.66 1.13 0.38 0.31

Table 7 Gap Distribution According to Dimensions, R-Category Problems(%)

N/A/K CPT CYC CAP 10-1000 20-2000
20/100/40 3.36 2.78 0.75 0.00 0.00
20/100/100 4.97 2.73 0.13 0.00 0.00
20/100/200 4.26 5.26 0.19 0.01 0.00
20/200/40 5.92 3.57 1.07 0.00 0.00
20/200/100 10.48 7.10 0.28 0.00 0.00
20/200/200 16.54 8.28 0.64 0.51 0.47
20/300/40 6.63 3.44 0.71 0.15 0.10
20/300/100 15.63 6.69 0.58 0.29 0.29
20/300/200 17.38 11.79 0.96 0.74 0.69

based tabu search range from 2.53% to 8.49%. In contrast, the gaps indicated in the capacity

scaling heuristic excluding the local branch range from 0.03% to 1.13%, those by the combined

approach for 10-1000 range from 0.00% to 0.45%, and those for 20-2000 range from 0.00% to 0.43%

respectively. Table 7 displays the same information, but in accordance with problem dimensions.

The gaps by cycle-based tabu search range from 2.73% to 11.79%. In contrast, the gaps indicated

by the combined approach for 10-1000 range from 0.00% to 0.74%, and those for 20-2000 range

from 0.00% to 0.69%.

Table 8 indicates detailed results for instances of R-category problems from r10 to r14, while

Table 9 shows the same for the range of r15 to r18. Numerical values shown in bold type are the

optimal values, while those shown in italic are the best upper bound except the optimal value.

The two combined approaches identify optimal solutions for the 43 instances out of 45 instances,

ranging from r10 to r14, and for the 22 or 23 instances out of 36 instances, ranging from r15 to

r18.

Table 10 displays the average computation times in CPU seconds for two previous heuristics,

as well as the capacity scaling heuristic and the combined approaches. These computation times

are reported in the papers written about them. Compared to previous heuristics, the computation

times by capacity scaling are very short, such as 103.1 seconds. The combined approaches can be

solved within a reasonable computation time, such as 1630.6 or 3374.9 seconds.

Katayama: Combined Capacity Scaling and Local Branching
16

Table 8 Results for R-Category Problems

Group C F OPT/LB CPT CYC CAP 10-1000 20-2000
F01 200087.0O 201350 200613 200087.0 200087.0 200087.0

C1 F05 346813.5O 356255 350573 349099.0 346813.5 346813.5
F10 488015.0O 556586 507118 495407.0 488015.0 488015.0
F01 229196.0O 231669 232473 229549.0 229196.0 229196.0

r10 C2 F05 411664.0O 428702 432913 416899.0 411664.0 411664.0
F10 609104.0O 632706 640621 620823.0 609104.0 609104.0
F01 486895.0O 492159 488737 487014.0 486895.0 486895.0

C8 F05 951056.0O 966670 980010 958575.0 951056.0 951056.0
F10 1421740.0O 1435900 1487270 1427375.0 1421746.0 1421746.0
F01 714431.0O 725324 725416 714431.0 714431.0 714431.0

C1 F05 1263713.0O 1362380 1306090 1265185.0 1263713.0 1263713.0
F10 1843611.0O 2181770 1914040 1854683.0 1843611.0 1843611.0
F01 870451.0O 875021 876894 870906.0 870451.0 870451.0

r11 C2 F05 1623640.0O 1764460 1694860 1625443.0 1623640.0 1623640.0
F10 2414060.0O 2589570 2607690 2419709.0 2414060.0 2414060.0
F01 2294912.0O 2294980 2295790 2295439.0 2294912.0 2294912.0

C8 F05 3507100.0O 3510450 3568430 3508336.0 3507100.0 3507100.0
F10 4579353.0O 4601830 4621900 4579353.0 4579353.0 4579353.0
F01 1639443.0O 1693860 1713670 1639565.0 1639443.0 1639443.0

C1 F05 3396050.0O 3837460 3746250 3408018.0 3396050.0 3396050.0
F10 5228711.0O 6035740 6070200 5297992.0 5228711.0 5228711.0
F01 2303557.0O 2338020 2326230 2303557.0 2303557.0 2303557.0

r12 C2 F05 4669799.0O 4756140 4967940 4669799.0 4669799.0 4669799.0
F10 7100019.0O 7311290 7638050 7100019.0 7100019.0 7100019.0
F01 7635270.0O 7636930 7637250 7635270.0 7635270.0 7635270.0

C8 F05 10067742.0O 10079200 10121700 10067742.0 10067742.0 10067742.0
F10 11967768.0O 11980100 12079300 11967768.0 11967768.0 11967768.0
F01 142947.0O 143388 144138 143036.0 142947.0 142947.0

C1 F05 263800.0O 276760 270316 265049.0 263800.0 263800.0
F10 365836.0O 416917 374999 369084.0 365836.0 365836.0
F01 150977.0O 151998 151513 150977.0 150977.0 150977.0

r13 C2 F05 282682.0O 302360 291510 284213.0 282682.0 282682.0
F10 406790.0O 439292 420028 411899.0 406790.0 406790.0
F01 208088.0O 213287 212451 209306.5 208088.0 208088.0

C8 F05 444826.0O 480773 484112 455397.0 444826.0 444826.0
F10 697967.0O 753007 758715 721716.0 697967.0 697967.0
F01 403414.0O 411327 415119 403703.0 403414.0 403414.0

C1 F05 749503.0O 873856 803356 752488.0 749503.0 749503.0
F10 1063098.0O 1292350 1155840 1064986.0 1063098.0 1063098.0
F01 437607.0O 443289 453204 437607.0 437607.0 437607.0

r14 C2 F05 849163.0O 911975 912456 850303.0 849163.0 849163.0
F10 1214609.0O 1467430 1333440 1215904.0 1214609.0 1214609.0
F01 668216.3O 702321 702226 668216.3 668216.3 668216.3

C8 F05 1613428.8O 1760950 1748930 1616844.0 1613813.0 1613813.0
F10 2602690.0O 2873660 2882710 2640197.0 2602690.0 2602690.0

According to our results, capacity scaling heuristic excluding local branching can offer good

quality results, and time required for computation is relatively short. The combined capacity scaling

Katayama: Combined Capacity Scaling and Local Branching
17

Table 9 Results for R-Category Problems

Group C F OPT/LB CPT CYC CAP 10-1000 20-2000
F01 1000787.0O 1041800 1049360 1000787.0 1000787.0 1000787.0

C1 F05 1966206.0O 2344340 2158720 1972352.0 1966584.0 1966206.0
F10 2826200.7L 4249580 3135760 2887346.0 2881867.0 2876628.0
F01 1148604.0O 1196910 1215130 1148933.0 1148604.0 1148604.0

r15 C2 F05 2452534.5L 3134060 2756680 2476246.0 2476246.0 2476246.0
F10 3771050.7L 5287330 4384640 3845665.0 3831483.7 3826956.0
F01 2297919.0O 2323700 2355730 2301016.8 2297919.0 2297919.0

C8 F05 5573412.8O 5633870 5926330 5581719.3 5573412.8 5573412.8
F10 8696932.0O 8760190 9180920 8696932.0 8696932.0 8696932.0
F01 136161.0O 138606 136538 136161.0 136161.0 136161.0

C1 F05 239500.0O 256813 247682 239500.0 239500.0 239500.0
F10 325671.0O 369862 338807 325839.0 325671.0 325671.0
F01 138532.0O 138946 139973 138532.0 138532.0 138532.0

r16 C2 F05 241801.0O 257604 246014 241801.0 241801.0 241801.0
F10 337762.0O 370432 355610 338663.0 337762.0 337762.0
F01 169233.0O 173164 172268 172135.0 169233.0 169233.0

C8 F05 348167.0O 370873 365214 355756.0 348167.0 348167.0
F10 525454.3L 586912 569874 536929.0 532580.0 529988.0
F01 354138.0O 368966 370090 354138.0 354138.0 354138.0

C1 F05 645488.0O 731107 688554 648354.0 645488.0 645488.0
F10 910518.0O 1143550 971151 915958.0 910518.0 910518.0
F01 370590.0O 383225 380850 370622.0 370590.0 370590.0

r17 C2 F05 706746.5O 831600 753188 709562.0 706746.5 706746.5
F10 1019646.0O 1273240 1108180 1023343.0 1020007.0 1020007.0
F01 501634.5O 522318 524038 502802.0 501634.5 501634.5

C8 F05 1097312.6L 1292310 1195140 1108348.0 1106828.5 1105083.0
F10 1752512.3L 2274520 1945080 1791149.5 1785356.5 1784793.0
F01 828117.0O 922368 872888 829097.0 828117.0 828117.0

C1 F05 1533675.0O 1962020 1716680 1537887.0 1533675.0 1533675.0
F10 2152710.3L 3001340 2377560 2188346.0 2174031.0 2174276.0
F01 919325.0O 993825 975396 920693.0 919325.0 919325.0

r18 C2 F05 1799590.4L 2102750 2037950 1831762.6 1830356.0 1829968.0
F10 2640190.2L 3396310 2966370 2703852.0 2703852.0 2701286.0
F01 1469035.8L 1608720 1622520 1481064.8 1477522.2 1477395.0

C8 F05 3870930.2L 4193520 4576750 3904541.0 3896893.2 3888572.3
F10 6361906.0O 6759150 7504310 6395749.7 6375803.0 6369890.3

Table 10 Average Computation Time for R-Category Problems(Seconds)

CPT CYC CAP 10-1000 20-2000
1654.7 2650.2 103.1 1630.6 3374.9

and local branching approach can obtain good solutions within a reasonable computation time, and

can also help to improve current best solutions or to identify optimal solutions for all C-category

problems. This method also yielded optimal solutions for 66 out of the 81 instances of R-category

problems.

Katayama: Combined Capacity Scaling and Local Branching
18

7. Conclusion

This paper presents the combined capacity scaling and local branching approach, which is applied

to column generation and cutting plane techniques for CMND characterized by strong formulation.

The performance of the proposed approaches is evaluated by solving C and R-category problems.

The numerical results are satisfactory, while the combined approach helps to identify the best

new solutions or the optimal solutions for all instances of C-category problems, as well as optimal

solutions for 66 out of 81 instances of R-category problems.

The capacity scaling approach excluding local branching can offer good quality results while

also helping to reduce computation efforts. The combined capacity scaling and local branching

approach can offer the highest quality results, and outperforms previous heuristics proposed in the

literature. We believe that the combined approach proposed in this paper is one of the best current

heuristics for solving CMND.

Acknowledgments

This work was supported by Grant-in-Aid for Scientific Research of Japan, No.21510155.

References

Alvarez, A. M., J. L. González-Velarde, K. De-Alba. 2005. Scatter search for network design problem. Ann.

Oper. Res. 138(1) 159–178.

Atamtürk, A., D. Rajan. 2002. On splittable and unsplittable flow capacitated network design arc-set

polyhedra. Math. Programming 92(2) 315–333.

Balakrishnan, A., T. L. Magnanti, P. Mirchandani. 1997. Network design. M. Dell’Amico, F. Maffioli,

S. Martello, eds., Annotated Bibliographies in Combinatorial Optimization. John Wiley & Sons, New

York, 311–334.

Barahona, F. 1996. Network design using cut inequalities. SIAM J. Comput. 6 823–837.

Bienstock, D., O. Günlük. 1996. Capacitated network design – polyhedral structure and computation. ORSA

J. Comput. 8 243–259.

Chouman, M., T. G. Crainic. 2010. A MIP-Tabu search hybrid framework for multicommodity capaci-

tated fixed-charge network design. Technical report CIRRELT-2010-31, Centre de recherche sur les

transports,Université de Montréal, Canada.

Chouman, M., T. G. Crainic, B. Gendron. 2003. A cutting-plane algorithm based on cutset inequalities for

multicommodity capacitated fixed charge network design. Technical report CIRRELT-2003-16, Centre

de recherche sur les transports,Université de Montréal, Canada.

Chouman, M., T. G. Crainic, B. Gendron. 2009. A cutting-plane algorithm for multicommodity capaci-

tated fixed-charge network design. Technical report CIRRELT-2009-20, Centre de recherche sur les

transports,Université de Montréal, Canada.

Katayama: Combined Capacity Scaling and Local Branching
19

Costa, A., J. F. Cordeau, B. Gendron. 2009. Benders, metric and cutset inequalities for multicommodity

capacitated network design. Comput. Optimization and Applications 42 371–392.

Costa, A. M. 2005. A survey on benders decomposition applied to fixed-charge network design problems.

Comput. Oper. Res. 32 1429 – 1450.

Crainic, T. G. 2003. Long-haul freight transportation. R. W. Hall, ed., Handbook of Transportation Science.

Kluwer Academic Publishers, 451–516.

Crainic, T. G., A. Frangioni, B. Gendron. 2001. Bundle-based relaxation methods for multicommodity

capacitated fixed charge network design problems. Discrete Applied Math. 112 73–99.

Crainic, T. G., M. Gendreau. 2007. A scatter search heuristic for the fixed-charge capacitated network design

problem. K. F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R. F. Hartl, M. Reimann, eds.,

Metaheuristics. Springer, 25–40.

Crainic, T. G., M. Gendreau, J. M. Farvolden. 2000. A simplex-based tabu search for capacitated network

design. ORSA J. Comput. 12 223–236.

Crainic, T. G., B. Gendron. 2002. Cooperative parallel tabu search for capacitated network design. J.

Heuristics 8 601–627.

Crainic, T. G., B. Gendron, G. Hernu. 2004. A slope scaling/Lagrangean perturbation heuristic with long-

term memory for multicommodity capacitated fixed-charge network design. J. Heuristics 10 525–545.

Crainic, T. G., Y. Li, M. Toulouse. 2006. A first multilevel cooperative algorithm for capacitated multicom-

modity network design. Comput. Oper. Res. 33 2602–2622.

Fischetti, M. Matteo, A. Lodi. 2003. Local branching. Math. Programming 98(1-3) 23–47.

Gendron, B., T. G. Crainic. 1994. Relaxations for multicommodity capacitated network design problems.

Technical report CIRRELT-965, Centre de recherche sur les transports,Université de Montréal, Canada.

Gendron, B., T. G. Crainic. 1996. Bounding procedures for multicommodity capacitated fixed charge network

design problems. Technical report CIRRELT-96-06, Centre de recherche sur les transports,Université

de Montréal, Canada.

Gendron, B., T. G. Crainic, A. Frangioni. 1997. Multicommodity capacitated network design. Technical

report CIRRELT-98-14, Centre de recherche sur les transports,Université de Montréal, Canada.

Ghamlouche, I., T. G. Cainic, M. Gendreau. 2011. Learning mechanisms and local search heuristics for the

fixed charge capacitated multicommodity network design. Internat. J. Comput. Sci. Issues 8(6) 21–32.

Ghamlouche, I., T. G. Crainic, M. Gendreau. 2003. Cycle-based neighbourhoods for fixed-charge capacitated

multicommodity network design. Oper. Res. 51 655–667.

Ghamlouche, I., T. G. Crainic, M. Gendreau. 2004. Path relinking, cycle-based neighborhoods and capaci-

tated multicommodity network design. Ann. Oper. Res. 131 109–134.

Katayama: Combined Capacity Scaling and Local Branching
20

Herrmann, J. W., G. Ioannou, I. Minis, J. M. Proth. 1996. A dual ascent approach to the fixed-charge

capacitated network design problem. Eur. J. Oper. Res. 95 476–490.

Hewitt, M., G. L. Nemhauser, M. Savelsbergh. 2010. Combining exact and heuristics approaches for the

capacitated fixed charge network flow problem. ORSA J. Comput. 22 314–325.

Holmberg, K., D. Yuan. 2000. A Lagrangian heuristic based branch-and-bound approach for the capacitated

network design problem. Oper. Res. 48 461–481.

Katayama, N., M. Chen, M. Kubo. 2009. A capacity scaling heuristics for the multicommodity capacitated

network design problem. J. Comput. Applied Math. 232 90–101.

Katayama, N., H. Kasugai. 1993. A capacitated multi-commodity network design problem - a solution

method for finding a lower bound using valid inequalities. J. Japan Industrial Management Association

44 164–175.

Kliewer, G., L. Timajev. 2005. Relax-and-cut for capacitated network design. G. S. Brodal, S. Leonardi,

eds., Algorithms - ESA 2005: Lecture Notes in Computer Science. Springer, 47–58.

Magnanti, T. L., P. Mirchandani, R. Vachani. 1993. The convex hull of two core capacitated network design

problems. Math. Programming 60 233–250.

Magnanti, T. L., P. Mireault, R. T. Wong. 1986. Tailoring benders decomposition for uncapacitated network

design. Math. Programming Study 26 112–155.

Magnanti, T. L., R. T. Wong. 1984. Network design and transportation planning : Models and algorithms.

Transportation Sci. 18 1–55.

Minoux, M. 1989. Network synthesis and optimum network design problems: Models, solution methods and

applications. Networks 19 313–360.

Pochet, Y., M. V. Vyve. 2004. A general heuristic for production planning problems. ORSA J. Comput. 16

316 – 327.

Powell, W. B., Y. Sheffi. 1989. Design and implementation of an interactive optimization system for network

design in the motor carrier industry. Oper. Res. 37 12–29.

Rodŕıguez-Mart́ın, I., J. J. Salazar-Gonzáleza. 2010. A local branching heuristics for the capacitated fixed-

charge network design problem. Comput. Oper. Res. 37 575–581.

Wong, R. T. 1984. Introduction and recent advances in network design: Models and algorithms. M. Florian,

ed., Transportation Planning Models. Elsevier Science, North Holland, Amsterdam, 187–225.

Wong, R. T. 1985. Location and network design. M. O’heEigeartaigh, J. Lenstra, A. RinnooyKan, eds.,

Combinatorial Optimization Annotated Bibliographies. John Wiley & Sons, New York, 129–147.

Yaghini, M., R. Akhavan. 2012. Multicommodity network design problem in rail freight transportation

planning. Procedia - Social and Behavioral Sci. (43) 728–739.

Katayama: Combined Capacity Scaling and Local Branching
21

Yaghini, M., M. Karimiand M. Rahbar. 2011. A hybrid simulated annealing and simplex method for fixed-

cost capacitated multicommodity network design. Internat. J. Applied Metaheuristic Comput. 2(4)

13–28.

Zaleta, N. C., A. M. A. Socarrás. 2004. Tabu search-based algorithm for capacitated multicommodity network

design problems. Proc. 14th International Conference on Electronics, Communications and Computers,

IEEE, Veracruz. 144 – 148.

