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Abstract 
Service network design problem is a model of a 

network design problem related to services in trans-
portation and logistics planning. In this paper, we con-
sider the service network design problem with a sin-
gle-asset type. This problem is particularly relevant 
to firms that operate consolidation transportation sys-
tems and makes the determination of the transporta-
tion network configuration and the characteristics of 
the corresponding assets, and can be represented as a 
capacitated multicommodity network design problem 
with design balance constraints. This paper presents a 
combined matheuristic with capacity scaling, re-
stricted branch-and-bound and local branching for the 
service network design problem. By combining ca-
pacity scaling and restricted branch-and-bound for a 
strong path-flow based formulation and local branch-
ing for a strong arc-flow based formulation, this com-
bined matheuristic can offer one of the best current 
solutions compared to previous heuristics. 

 
Keyword: Service Network Design, Capacity 
Scaling, Local Branching. 

1. Introduction 
Service network design problem (SNDB) is a 

model of a network design problem related to services 
in transportation and logistics planning. This problem 
is particularly relevant to firms that operate consolida-
tion transportation systems and is typically related to 
the tactical/operational planning [9]. The service net-
work design problem can be stated as selecting assets 
such that all commodities can be transported from their 
origin to their destination, and routing assets to ensure 
their availability between terminals to perform the se-
lected assets. 

In this paper, a fundamental service network design 
problem with a single-asset type is considered such 
that only one unit of asset is used for each service such 
as crews, trucks, or ships [15]. The service network de-
sign problem with a single-asset type is represented as 
the capacitated multicommodity network design prob-
lem with design balance constraints.  

The capacitated multicommodity network design 

problem represents a generic network model for appli-
cations in designing the construction and improvement 
of logistics, transportation, distribution and production 
networks under arc capacities. The capacitated multi-
commodity network design problem is known as NP-
Hard [5, 13]. As the problem removed design balance 
constraints from SNDB is reduced to the capacitated 
multicommodity network design problem, SNDB is 
also NP-Hard. 

Pedersen et al. [15] presented a service network de-
sign models with a single-asset type and developed a 
multi-start matheuristic based on a tabu search heuris-
tic. Andersen et al. [2] compared the node-arc based 
formulation, the path-based formulation and a cycle-
based formulation for service network design prob-
lems. Bai et al. [3] proposed a guided local search, 
which is used to search based on a good network de-
sign vector solving the corresponding LP relaxation 
problem. Andersen et al. [1] proposed a branch and 
price method for a cycle-based formulation of the ser-
vice network design problem. Chouman and Crainic 
[6] presented a MIP-based tabu search heuristic, and 
Chouman and Crainic [7] presented a matheuristic 
with cutting-plane of various valid inequalities by a 
MIP-based learning process. Bai et al. [4] developed a 
tabu assisted guided local search with a multistart and 
an efficient feasibility repairing heuristic. Recently, 
Vu et al. [16] developed a three-phase matheuristic 
combining tabu search, path relinking and intensifica-
tion phases. 

For the capacitated multicommodity network de-
sign problem, which is removed design balance con-
straints from SNDB, several surveys on the models 
and the associated solution methods can be found in 
Magnanti and Wong [13], Wong [17], Minoux [14], 
Balakrishnan et al. [5], Gendron et al. [11], Costa [8], 
and Yaghini and Rahbar [18]. Recently, Katayama and 
Yurimoto [12] proposed a combined capacity scaling 
and local branching. This matheuristic can offer high-
est quality results for the problem. 

In many papers, an arc-flow based formulation or a 
path-flow based formulation without forcing con-
straints are used for SNDB. Since the formulation in-
cluding forcing constraints is a large mixed integer 
programming problem, it takes significant amounts of 
computation time to solve the large size problem or its 
linear relaxation problem. However, for improving the 
solutions and the lower bound derived from the linear 
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relaxation problem, it is desirable to solve the formu-
lation including forcing constraints. Column genera-
tion for path-flow variables and cutting plane for forc-
ing constraints can reduce the problem size and in-
crease solvability of the problem. 

This paper presents a capacity scaling heuristic us-
ing column generation and cutting plane techniques for 
solving SNDB with forcing constraints. Capacity scal-
ing is an approximate iterative solution approach based 
on changing arc capacities and it can be produced most 
convergence solutions. Capacity scaling produces 
good solutions within a reasonable computation time 
in general, but high-quality solutions may not be pro-
duced all the time. Restricted branch-and-bound is ap-
plied for the solutions derived from capacity scaling. 
Restricted branch-and-bound is the method to solve 
the problem which has restricted 0-1 variables. Conse-
quently local branching is applied for the best solution 
of restricted branch-and-bound. Local branching is the 
method to solve a new problem with the addition of 
local branching constraints based on an exploration of 
solution neighborhoods. A combined capacity scaling, 
restricted branch-and-bound and local branching 
matheuristic can produce good solutions compared to 
previous approaches found in related literature for all 
benchmark problems. 

2. Mathematical Formulation 
A network ( )KANG ,,=  is provided with a set of 

nodes N , a set of directed arcs A  and a set of com-
modities K . kd  is defined as the demand of flow of 
commodity Kk∈  from its single origin node to its 
single destination node. −

nN  is defined as the set of 
outward nodes from node n , and +

nN  is defined as the 
set of inward nodes into node n . Let ijf  be the fixed 
cost of an asset on arc ( ) Aji ∈, , k

ijc the unit variable 
flow cost for commodity k flowing on arc ( )ji, , and 

ijC  the limited arc capacity for all commodities. 
The formulation of SNDB has two type variables. 

The first type is a binary asset design variable. The as-
set design variable ijy  indicates whether an asset is 
used on arc ( )ji, , 1=ijy , or not, 0=ijy  in the net-
work design. The second type is a continuous path 
flow variable. The path flow variable k

px  represents 
the amount of path flow of commodity flowing on path

kPp∈ . The constant p
ijδ  indicates whether arc ( )ji,  

is included in path p , 1=p
ijδ , or not, 0=p

ijδ . 
The path-flow based formulation SNDBP of SNDB 

can be expressed as follows: 
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The objective function (1) minimizes the total cost, 
which is the sum of variable flow costs of commodities 
plus the sum of fixed costs for assets in a given net-
work design. Equations (2) ensure flow conservations 
such that the sum of path flows of commodity k  is 
equal to the demand. Equations (3) consist of the de-
sign balance constraints ensuring that the total number 
of assets on arcs entering node n  is equal to that of 
assets on arcs leaving node n . Constraints (4) provide 
the capacity constraints for assets and state that the to-
tal flow on arcs cannot exceed the capacity, if the asset 
on arc ( )ji,  is used, 1=ijy , and must be 0 if the asset 
is not used, 0=ijy . Constraints (5) provide the forcing 
constraints for assets and commodities and state that 
the flow for commodity k  cannot exceed the demand, 
if 1=ijy , and must be 0, if 0=ijy . Since forcing con-
straints are tight constraints for SNDB, a good lower 
bound can be obtained from its linear relaxation prob-
lem of the strong formulations with the forcing con-
straints. As the forcing constraints are additional valid 
constraints, the formulation removed the forcing con-
straints has the same optimal solution. Constraints (6) 
and (7) are non-negativity and integrality conditions 
for variables. 

Let k
ijz  be the arc flow variable for commodity k  

flowing on arc ( )ji, . The arc-flow based formulation 
SNDBA of SNDB can be expressed as follows: 
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Equations (9) are flow conservations and represent 
relations between the sum of arc flows into node n  
and the sum of arc flows out from node n  for com-
modity k . Constraints (11) are the capacity constraints 
for assets, and constraints (12) are the forcing con-
straints for assets and commodities. 

Since the problem removed the design balance con-
straints from SNDB is reduced to the capacitated mul-
ticommodity network design problem, some heuristics 
for the capacitated multicommodity network design 
problem can be applied for solving SNDB without a 
major change. In this paper, capacity scaling and re-
stricted branch-and-bound is applied for the path-flow 
based formulation SNDBP using column generation 
and cutting plane. Local branching is applied for the 
arc-flow based formulation SNDBA.  

3. Capacity Scaling 
Capacity scaling represented an approximate itera-

tive solution approach for capacitated network prob-
lems based on changing arc capacities, which depend 
on arc flows. As the design variable value derived 
from the linear relaxation solution of SNDBP may be 
a decimal fraction, the solution may not be approxima-
tion for finding a good feasible binary solution of 
SNDBP. On the other hand, as almost the design vari-
ables of the solution derived from capacity scaling are 
binary, the solution may be a good initial solution for 
finding a good feasible binary solution of SNDB. 

If the optimal path flow and the optimal arc flow of 
SNDBP are found, we consider the problem changed 
capacity to the optimal arc flow for each arc. When the 
linear relaxation problem with the capacities is solved, 
either 0 or 1 solutions for all design variables can be 
obtained. Since SNDBP associated with all fixed de-
sign variables is reduced to a multicommodity flow 
problem, the optimal objective value of SNDBP is ob-
tained. As a matter of course, finding the optimal flow 
of SNDBP is our main purpose, and it is as hard as 
solving SNDB. Consequently, if a near-optimal flow 
can be found, the optimal arc flows can be estimated 
and a good approximate solution could possibly be de-
rived from it. On the other hand, by changing capaci-
ties a little bit at a time, we may gradually identify the 
near-optimal flow. 

Capacity scaling proceeds by solving the linear re-
laxation problem of SNDBP associated with lC  as 
substitution for C  at the iteration l . The linear relaxa-
tion problem LR( lC ) with capacity lC  can be ex-
pressed as follows: 
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ijC  is replaced for l
ijC  in the right-hand side of the 

constraint (17), and the upper bound 1 is replaced for 
l
ijij CC /  to enable arc flow up to its original capacity 

ijC  in the right-hand side of the constraint (21).  
Let ijX~  be the optimal arc flow on arc ( )ji, of LR 

( lC ). At the next iteration, we substitute l
ijC  with

( ) l
ijij CX λλ −+ 1~ , where ( )10 ≤≤ λλ  a smoothing pa-

rameter is designed to prevent rapid changes. If all de-
sign variables converge to zero or one in the solution 
of LR( lC ), then we solve the multicommodity net-
work flow problem associated with all fixed design 
variables set to these convergent values, and both a 
feasible solution and an upper bound of SNDBP can 
be found. It may require numerous iterations for ob-
taining convergent solutions, otherwise few design 
variables may not converge. Consequently when most 
design variables converge to zero or one by a threshold 
value ε , and the number of non-converged design var-
iable is less than or equal to a branch-and-bound exe-
cution parameter B , the branch-and-bound algorithm 
of an MIP solver is applied for solving SNDBP asso-
ciated with non-convergent free variables, and the up-
per bound may be found. Let B∆  be subtracted from 
B . After the restricted branch-and-bound algorithm, 
B  is reduced by B∆ , until minBB < . The capacity 
scaling stops when the iteration number exceeds the 
minimum iteration number minITE  and an upper 
bound UB  has been found, or the iteration number ex-
ceeds the maximum iteration number maxITE . An out-
line of capacity scaling and restricted branch-and-
bound proceed as Algorithm 1.  

 
 Algorithm 1: Capacity Scaling and Restricted  

Branch-and-Bound 
Set λ , ε , minITE , maxITE , B , minB  and B∆ ; 

CC =:1 ; ∞=:UB ; 1:=l ; 
repeat 

Solve LR( lC ) by Column Generation and Cutting 
Plane;  
Get the arc flow solution X~  and the design solution 
y~  of LR( lC ); 

for ( ) Aji ∈,  do 

if ε<ijy~  then 0=ijy ; 
else if ε−>1~

ijy  then 1=ijy ; 
else ijy  is free; 



 

end 
if the number of free variables of y  is less than B  
then 

Solve SNDBP associated with the restricted de-
sign variable y  by an MIP solver; 
Get the objective function value SNDBPZ  and the 
design solution y  of SNDBP;  

{ }BBBB ∆−= ,max: min ; 
If UB<SNDBPZ  then 

SNDBP: ZUB = ; 
1: += ll ; 

for ( ) Aji ∈,  do 
( ) 11~: −−+= l

ijij
l
ij CXC λλ  

end 
until minITEl >  and ∞≠UB , or maxITEl >  
 

4. Column Generation and Cutting Plane 
In capacity scaling, the linear programming prob-

lem LR( lC ) is solved iteratively. Since LR( lC ) has 
exponential number of path flow variables and the 
forcing constraints of the number of ( )AKO , all var-
iables and constraint should not be included in the 
problem explicitly when solving large instances. In or-
der to solve larger instances efficiently, column gener-
ation can be applied for path flow variables and cutting 
plane can be applied for forcing constraints. 

At column generation procedure, we generate path 
flow variables, which have the negative reduced cost 
in the current problem. At cutting plane procedure, if 
there are forcing constraints which are violated by the 
current solution, these forcing constraints are gener-
ated and the new forcing constraints are added to the 
forcing constraint set. 

For each commodity k , let kk PP ⊂
~  be the initial 

set of paths. Let KAKA ×⊂
~ , be the set of index of 

current forcing constraints. 
We reformulate the restricted problem, which has 

restricted path sets P~  and restricted forcing constraint 
set KA~  for LR( lC ), as follows in RLR( KAPCl ~,~, ): 
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Let s  be the dual variable for the constraint (23), 
( )0≥u  for the constraint (24), ( )0≥w for the constraint 

(26). If ( ) KAkji ~,, ∉ , we assume that 0=k
ijw . By 

solving RLR( KAPCl ~,~, ) optimally, we get the opti-
mal dual solution ( )wus ,, . The reduced cost of path 
flow variable k

px  is represented by: 
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A pricing problem is used for generating new vari-
ables. The pricing problem of RLR( KAPCl ~,~, ) is re-
duced to shortest path problems for each commodity 
k . As ks  can be considered as a constant, the sepa-
rated pricing problem PPk for commodity k  is ex-
pressed as follows: 
(PPk) 

( )
( )

∑ ∑
∈ ∈

++=
kPp

k
p

Aji

p
ij

k
ijij

k
ij

k xwucz
,

min δ  (30) 

subject to 

,k

Pp

k
p dx

k

=∑
∈

 (31) 

.0 kk
p Ppx ∈∀≥  (32) 

Since PPk is the shortest path problem associated 
with nonnegative arc length k

ijij
k
ij wuc ++ , it can be 

solved efficiently by Dijkstra’s algorithm. Let p̂  be 
the optimal path of PPk and kz  be the length of p̂ . If

kk sz < , then the path flow variable k
px ˆ  corresponding 

to p̂  has negative reduced cost. Then path p̂  is added 
to kP~  , and the new variable k

px ˆ  is generated as a new 
column. 

By the solution of RLR( KAPCl ~,~, ), the violated 
forcing constraints are generated and the index of the 
forcing constraints is added to KA~ , and we repeat to 
solve RLR( KAPCl ~,~, ). When no new path and no 
path flow variable are generated, LR( lC ) is solved op-
timally and the optimal solution of LR( lC ) is the last 
solution of RLR( KAPCl ~,~, ). The algorithm of column 
generation and cutting plane is summarized in Algo-
rithm 2. 

In Algorithm 1, SNDBP must be solved when the 
number of free variables of y  is less than or equal to
B . Since solving this problem optimally is hard even 
if it has restricted design variables, we solve SNDBP 
associated with P~  instead of P  as a path set and KA~  
instead of A  and K  as the forcing constraint set. Fur-
thermore, if some upper bound UB  of SNDBP has 
been found, we add UB<SNDBPZ  to SNDBP as a con-
straint, where SNDBPZ  is the current best objective 
function value of SNDBP. Let this restricted problem 
be SNDBP( KAP ~,~ ). SNDBP( KAP ~,~ ) can be solved 



 

comparatively easily. 
 

Algorithm 2: Column Generation and Cutting Plane 
 
Set P~  and φ=:~, KA ; 
repeat 

repeat 
Solve RLR( KAPCl ~,~, ) by an MIP solver; 
Get the optimal dual solution ( s , u , w ) of 
RLR( KAPCl ~,~, ); 
for Kk∈  do 

Solve PPk; 
Get the shortest path p̂  and the shortest path 

length kz ; 
if kk sz <  then 

p̂  is added to kP~  and generate path 
variable k

px ˆ ; 
end 

until no path variable is generated 
Get the optimal path flow x̂  and the optimal design 
solution ŷ  of LR( lC ); 
for ( ) Aji ∈,  do 

 for Kk∈  do 
if ij

k

Pp

k
p

p
ij ydx

k

ˆˆ ≤∑
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δ  then 

( )kji ,,  is add to KA~ ; 
end 

end 
until no violated forcing constraint is generated 

 

5. Local Branching 
Although capacity scaling and restricted branch-

and-bound may produce good solutions within a rea-
sonable computation time in most cases, the method 
may not always yield high-quality solutions. Conse-
quently, for improving the solutions, a kind of local 
branching [10] is applied to solutions derived from ca-
pacity scaling and restricted branch-and-bound. Local 
branching is the method to solve a new restricted prob-
lem based on an exploration of solution neighborhoods 
defined by local branching constraints. 

Given the feasible design solution y  derived from 
capacity scaling and restricted branch-and-bound, and 
a neighborhood size parameter ( )0>M , additional lo-
cal branching constraints are as follows: 
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The first branching constraint includes the domain of 
OPTM −  neighborhood of y  and the second branch-

ing constraint excludes the current solution. Since the 

feasible design solution of SNDBP is also clearly that 
of SNDBA, the solution can be used for local branch-
ing of SNDBA. The reason for using SNDBA instead 
of SNDBP( KAP ~,~ ) is that there is a possibility that 
the optimal path set of SNDBA may not be included in 
paths of the restricted path set of SNDBP( KAP ~,~ ). 

We add the branching constraint (33) and (34) for 
y  to SNDBA, and solve the added problem by an MIP 

solver. Since solving SNDBA optimally is hard, we set 
a computation time limit T  to solve SNDBA. If a bet-
ter feasible solution 'y  than the current solution is 
found within T , it becomes the new incumbent as 

': yy = . Before this incumbent, we solve the problem 
such that the constraint (33) is replaced by the follow-
ing constraint: 
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When a better solution cannot be found, M  is re-
duced to ( )1/ >∆∆ MMM ) until minMM < . 

 
Algorithm 3: Local Branching 
 
Set y  and UB  by Capacity Scaling and Restricted 
Branch-and-Bound;  
Add the equation (33) and (34) to SNDBA; 
repeat 

Solve SNDBA within T ; 
if a feasible solution of SNDBA is found then 

Get the upper bound SNDBAZ  and the feasible de-
sign solution 'y of SNDBA; 
Remove the equation (33) and add the equation 
(35) to SNDBA; 

if UB<SNDBAZ  then 

SNDBAZ:=UB  and ': yy = ; 
Add the equation (33) and (34) to SNDBA; 

else MMM ∆= /: ; 
until minMM <  
 

6. Computational Experiments  
Experiments have been performed to evaluate the 

performance of the combined matheuristic proposed in 
this paper. The results of the combined matheuristic 
are compared to optimal values or lower bounds by an 
MIP solver, also compared to the results of parallel 
tabu search [15], tabu assisted guided local search [4], 
cutting-plane matheuristic [7] and three-phase 
matheuristic [16]. To ensure comparisons, the same 
two sets of problem instances as used for SNDB are 
employed. The detailed description of these problem 
instances is given in Pedersen et al. [15]. 

The first set of problem instances, denoted in cate-
gory “C,” consists of 24 instances characterized by the 



 

number of nodes, arcs, and commodities. Two letters 
are used to characterize the fixed cost level, “F” for 
high and “V” for low relative to flow cost, and the ca-
pacity level, “T” for tight and “L” for loose relative to 
total demand.  

The second set of problem instances, denoted in 
category “R,” consists of 54 instances divided into 6 
groups ranging from r13 to r18. They are characterized 
by three fixed cost levels, “F01,” “F05,” and “F10,” 
and three capacity levels, “C1,” “C2,” and “C8.” If the 
“F” value is small, the fixed cost is low, and if the “F” 
value is large, the fixed cost is high relative to flow 
costs. If the “C” value is small, the arc capacity is loose, 
and if the “C” value is large, the arc capacity is tight 
relative to total demand.  

The experiments were performed on PCs with Pen-
tium i7 CPU 3.4GHz with four cores and 16GBytes 
RAM. The computer code was written in C++ com-
piled on Ubuntu 11, and CPLEX 12, an MIP solver by 
ILOG, was used for solving linear programming prob-
lems and mixed integer programming problems. In or-
der to access solution quality relative to optimal values 
or lower bounds, all instances were solved by the 
branch-and-bound algorithm of CPLEX, and a limit of 
30 hours of computation time was imposed for each 
instance. If the problem could not be solved optimally 
within the computation time limit, the lower bound 

found by the branch-and-bound algorithm was used in-
stead of the optimal value. The smoothing parameter λ 
was calibrated from 0.025 to 0.250, and the neighbor-
hood size parameter M  and the time limit T  were 
tested combinations (10, 1000 seconds), (10, 2000 sec-
onds) and (20, 2000 seconds). We set the parameters 
as 01.0=ε , 150=B , 10min ==∆ BB , 2=∆M , 

1min =M , 50min =ITE , and 1000max =ITE . 
Table 1 displays the average gaps of the results for 

C-category problems. The average gaps are relative to 
the optimal value or the lower bound by CPLEX for 
the upper bound by each heuristic. Column PTAB is 
the results by parallel tabu search, TGLS by tabu as-
sisted guided local search, CPM by cutting-plane 
matheuristic, and TFM by three-phase matheuristic re-
spectively. Column RBB is the result by the capacity 
scaling and restricted branch-and-bound excluding lo-
cal branching. Column 10-1000, 10-2000 and 20-2000 
are the results of the combined matheuristic, and the 
first number indicates M  and the second number in-
dicates T  . The average gap of three-phase matheuris-
tic, which is the best result among four previous heu-
ristics, is 1.18%. The average gap of the capacity scal-
ing and restricted branch-and-bound is 0.92%, and it is 
better than that of three-phase matheuristic. Mean-
while the average gaps of the three combined 

Table 1. Average Gap for C-category problems (%) 
PTAB TGLS CPM TFM RBB 10-1000 10-2000 20-2000 
4.55 2.55 2.30 1.18 0.92 0.69 0.66 0.65 

 

Table 2. Results for C-category problems 
N/A/K/FC OPT/LB PTAB TGLS CPM TFM RBB 10-1000 10-2000 20-2000 

20/230/200/VL 97273.5O 101345 98760.0 98699 97274 97597.0 97273.5 97273.5 97273.5 
20/230/200/FL 139395.0O 148384 142213.0 141744 139395 139831.0 139395.0 139395.0 139395.0 
20/230/200/VT 100221.0O 103371 102137.3 103103 100720 100530.0 100221.0 100221.0 100221.0 
20/230/200/FT 138856.3L 144766 141802.0 142638 138962 139253.0 139059.0 138962.0 138994.0 
20/300/200/VL 77436.0O 80269 78787.0 79953 77584 77584.0 77502.0 77436.0 77502.0 
20/300/200/FL 118152.4L 126258 121773.0 120979 119987 119324.3 119259.0 119259.0 119259.0 
20/300/200/VT 76207.5O 78444 77066.0 76545 76450 76207.5 76207.5 76207.5 76207.5 
20/300/200/FT 110669.0L 116338 114465.0 113412 111776 111462.0 111462.0 111462.0 111462.0 
30/520/100/VL 54683.0O 55786 55422.0 55733 54783 54733.0 54683.0 54683.0 54683.0 
30/520/100/FL 96582.9L 101612 100290.0 104235 100098 99193.0 98470.7 98519.0 98170.8 
30/520/100/VT 53023.0O 54092 53744.0 53224 53035 53246.0 53023.0 53023.0 53023.0 
30/520/100/FT 99668.7L 104702 103996.0 106251 101412 102043.0 101177.0 101229.0 101131.0 
30/520/400/VL 114071.2L 118071 116196.0 115220 115528 114688.2 114565.1 114565.1 114565.1 
30/520/400/FL 150503.6L 160979 154941.0 153737 153409 152893.4 152776.3 152776.3 152776.3 
30/520/400/VT 116270.9L 120421 118335.7 117056 117226 116670.9 116670.9 116508.7 116616.4 
30/520/400/FT 153109.0L 161987 157939.6 155942 155906 155121.0 155121.0 154820.2 154820.2 
30/700/100/VL 48693.0O 49429 49221.0 49268 48807 48708.0 48693.0 48693.0 48693.0 
30/700/100/FL 60853.6L 63292 62055.0 62267 61408 61528.0 61463.0 61331.0 61298.0 
30/700/100/VT 46750.0O 47487 47518.0 46928 46812 47137.0 46750.0 46750.0 46750.0 
30/700/100/FT 56131.0O 57187 57571.0 57701 56237 56609.0 56177.0 56169.0 56169.0 
30/700/400/VL 98428.2L 103932 101609.5 99458 100589 99332.5 99332.5 99314.0 99314.0 
30/700/400/FL 134240.0L 148114 142563.2 139607 141037 137889.0 137771.0 137724.2 137724.2 
30/700/400/VT 96165.5L 103085 98656.8 97737 97875 97425.5 97329.0 97329.0 97278.0 
30/700/400/FT 130234.7L 138609 135777.5 132855 133686 132486.7 132486.7 132486.7 132486.7 
 



 

matheuristic are 0.69%, 0.66% and 0.65%, and these 
are less than three-fifth of that of three-phase 
matheuristic. 

Table 2 displays the detailed results for C-category 
problems. Column N/A/K/FC indicates the number of 
nodes, arcs, commodities, the fixed cost level and the 
capacity level. Column OPT/LB corresponds to the 
optimal value or the lower bound by CPLEX. “O” in-
dicates that the optimal value is found, while “L” indi-
cates that the numerical value is the lower bound. A 
numerical value in bold type is the optimal value, 
while a numerical value in italic type is the best upper 
bound except the optimal value. Three-phase 
matheuristic find the optimal solutions for two in-
stances out of 24 instances, meanwhile the three com-
bined matheuristic find the optimal solutions for eight 
or nine instances. Additionally, the combined 
matheuristic 10-2000 find the new best upper bound 
for 11 instances and 20-2000 find the new best upper 
bound for 13 instances out of 16 instances to the ex-
clusion of the instances of which the optimal values 

are found. Consequently, the combined matheuristic 
can find the best solutions for all instances of C-cate-
gory problems.  

Table 3 displays the average computation times in 
CPU seconds for four previous heuristics, as well as 
capacity scaling and restricted branch-and-bound, and 
three combined matheuristic. The computational times 
for four previous heuristics are reported in their papers. 
Due to the fact that different CPUs are used, these 
computation times cannot be compared directly. The 
previous two heuristics were performed in a given 
computation time limit such as 2400 or 3600 seconds. 
The average computational time by the capacity scal-
ing and restricted branch-and-bound is relatively short 
such as 524.1 seconds. The three combined matheuris-
tic can be solved within a reasonable average compu-
tation time such as 3780.2, 6928.4 or 8637.0 seconds. 
Table 4 shows the detailed computation times for C-
category problems. 

Table 5 displays the average gaps of the results for 

Table 3. Average Computation Time for C-category problems (seconds) 
PTAB TGLS CPM TFM RBB 10-1000 10-2000 20-2000 
3600.0 2400.0 3581.4 7785.0 524.1 3780.2 6928.4 8637.0 

 

Table 4. Computation Time for C-category problems (seconds) 
N/A/K/FC CPM TFM RBB 10-1000 10-2000 20-2000 

20/230/200/VL 635 5460 91.5 2500.7 3876.1 5579.7 
20/230/200/FL 1026 5520 219.3 3652.1 5122.4 8836.8 
20/230/200/VT 544 4680 46.3 1474.1 1465.1 4223.3 
20/230/200/FT 634 5040 556.0 3831.0 12808.4 9577.5 
20/300/200/VL 432 9720 78.8 4254.2 9722.6 8596.3 
20/300/200/FL 1027 6600 421.1 5205.2 6683.2 9056.2 
20/300/200/VT 283 5400 36.5 1267.5 1261.1 1976.6 
20/300/200/FT 958 8460 605.5 3492.9 5489.8 7863.3 
30/520/100/VL 225 5100 14.9 496.8 496.9 1606.7 
30/520/100/FL 1630 7080 412.7 5803.4 6435.8 10337.4 
30/520/100/VT 82 6180 10.2 2791.5 2796.0 5332.9 
30/520/100/FT 870 9900 422.3 6507.8 14119.4 21799.0 
30/520/400/VL 6830 13260 193.7 3283.5 6986.8 9283.5 
30/520/400/FL 10529 8760 806.3 3009.7 5159.1 5213.6 
30/520/400/VT 5413 12600 82.3 3426.5 13336.9 12285.8 
30/520/400/FT 10696 8160 1292.9 4724.4 9752.0 11929.2 
30/700/100/VL 101 4440 8.1 228.4 226.1 381.2 
30/700/100/FL 631 9180 68.7 3414.0 12898.8 9823.1 
30/700/100/VT 125 8100 16.7 4180.3 5349.3 8587.2 
30/700/100/FT 309 9120 51.4 5078.8 8975.1 8211.8 
30/700/400/VL 7893 8160 497.5 4086.0 9616.6 11660.6 
30/700/400/FL 15723 4800 1317.7 5377.6 5742.8 7745.6 
30/700/400/VT 8405 13320 1825.4 4953.2 7064.8 14481.3 
30/700/400/FT 10953 7800 3503.5 7686.1 10897.5 12900.6 

 
Table 5. Average Gap for R-category problems (%) 

PTAB CPM TFM RBB 10-1000 10-2000 20-2000 
4.56 2.75 0.76 0.75 0.20 0.18 0.15 

 
 



 

R-category problems. The average gap of three-phase 
matheuristic is 0.76%. In contrast, the average gap of 
the capacity scaling and restricted branch-and-bound 
is 0.75% and that of the three combined matheuristic 
are only 0.20%, 0.18% and 0.15%. The gap of the ca-
pacity scaling and restricted branch-and-bound is as 
the same as that of three-phase matheuristic, and the 
gap of the combined matheuristic 20-2000 is only 
about one-fifth of that of three-phase matheuristic. 

Table 6 and 7 displays the detailed results for R-
category problems. The three combined matheuristic 
can find the optimal solutions for 42 instances out of 
54 instances and find the new best upper bound for 14 
instances to the exclusion of the instances of which the 
optimal values are found. Consequently, the combined 
matheuristic can find the best solutions for all in-
stances of R-category problems. 

Table 8 displays the average computation times in 
CPU seconds for three previous heuristics, these com-
putational times of which are reported in their papers, 
the capacity scaling and restricted branch-and-bound, 
and the three combined matheuristic. When compared 
to previous heuristics, the computational times by ca-
pacity scaling are relatively short such as 251.3 sec-
onds. The three combined matheuristic can be solved 
within a reasonable computation time such as 2283.5, 
3691.4 or 5074.2 seconds. 

According to the results, the capacity scaling and 
restricted branch-and-bound can offer good quality re-
sults and the computational time is relatively short. 

The combined capacity scaling, restricted branch-and-
bound and local branching matheuristic can obtain 
good solutions within a reasonable computation time, 
and improve the current best solutions or find the op-
timal solutions for the all C and R-category problems. 

7. Conclusion  
This paper presents the combined capacity scaling, 

restricted branch-and-bound and local branching 
matheuristic, which is applied to column generation 
and cutting plane techniques for SNDB characterized 
by the strong formulation. The performance of the pro-
posed matheuristic is evaluated by solving C and R-
category problems. The numerical results are satisfac-
tory, while the combined matheuristic can find the best 
new solutions or the optimal solutions for all instances 
of C-category and R-category problems. 

The capacity scaling excluding local branching can 
offer good quality results and the computational effort 
can be reduced considerably. The combined capacity 
scaling, restricted branch-and-bound and local branch-
ing matheuristic can offer highest quality results and 
outperforms previous heuristics proposed in the litera-
ture. 
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