
A Combined Matheuristic for Service Network Design
Problem

Naoto Katayama
Ryutsu Keizai University, Distribution and Logistics Systems,

email: katayama@rku.ac.jp

Abstract
Service network design problem is a model of a

network design problem related to services in trans-
portation and logistics planning. In this paper, we con-
sider the service network design problem with a sin-
gle-asset type. This problem is particularly relevant
to firms that operate consolidation transportation sys-
tems and makes the determination of the transporta-
tion network configuration and the characteristics of
the corresponding assets, and can be represented as a
capacitated multicommodity network design problem
with design balance constraints. This paper presents a
combined matheuristic with capacity scaling, re-
stricted branch-and-bound and local branching for the
service network design problem. By combining ca-
pacity scaling and restricted branch-and-bound for a
strong path-flow based formulation and local branch-
ing for a strong arc-flow based formulation, this com-
bined matheuristic can offer one of the best current
solutions compared to previous heuristics.

Keyword: Service Network Design, Capacity
Scaling, Local Branching.

1. Introduction
Service network design problem (SNDB) is a

model of a network design problem related to services
in transportation and logistics planning. This problem
is particularly relevant to firms that operate consolida-
tion transportation systems and is typically related to
the tactical/operational planning [9]. The service net-
work design problem can be stated as selecting assets
such that all commodities can be transported from their
origin to their destination, and routing assets to ensure
their availability between terminals to perform the se-
lected assets.

In this paper, a fundamental service network design
problem with a single-asset type is considered such
that only one unit of asset is used for each service such
as crews, trucks, or ships [15]. The service network de-
sign problem with a single-asset type is represented as
the capacitated multicommodity network design prob-
lem with design balance constraints.

The capacitated multicommodity network design

problem represents a generic network model for appli-
cations in designing the construction and improvement
of logistics, transportation, distribution and production
networks under arc capacities. The capacitated multi-
commodity network design problem is known as NP-
Hard [5, 13]. As the problem removed design balance
constraints from SNDB is reduced to the capacitated
multicommodity network design problem, SNDB is
also NP-Hard.

Pedersen et al. [15] presented a service network de-
sign models with a single-asset type and developed a
multi-start matheuristic based on a tabu search heuris-
tic. Andersen et al. [2] compared the node-arc based
formulation, the path-based formulation and a cycle-
based formulation for service network design prob-
lems. Bai et al. [3] proposed a guided local search,
which is used to search based on a good network de-
sign vector solving the corresponding LP relaxation
problem. Andersen et al. [1] proposed a branch and
price method for a cycle-based formulation of the ser-
vice network design problem. Chouman and Crainic
[6] presented a MIP-based tabu search heuristic, and
Chouman and Crainic [7] presented a matheuristic
with cutting-plane of various valid inequalities by a
MIP-based learning process. Bai et al. [4] developed a
tabu assisted guided local search with a multistart and
an efficient feasibility repairing heuristic. Recently,
Vu et al. [16] developed a three-phase matheuristic
combining tabu search, path relinking and intensifica-
tion phases.

For the capacitated multicommodity network de-
sign problem, which is removed design balance con-
straints from SNDB, several surveys on the models
and the associated solution methods can be found in
Magnanti and Wong [13], Wong [17], Minoux [14],
Balakrishnan et al. [5], Gendron et al. [11], Costa [8],
and Yaghini and Rahbar [18]. Recently, Katayama and
Yurimoto [12] proposed a combined capacity scaling
and local branching. This matheuristic can offer high-
est quality results for the problem.

In many papers, an arc-flow based formulation or a
path-flow based formulation without forcing con-
straints are used for SNDB. Since the formulation in-
cluding forcing constraints is a large mixed integer
programming problem, it takes significant amounts of
computation time to solve the large size problem or its
linear relaxation problem. However, for improving the
solutions and the lower bound derived from the linear

Received:
Accepted:

mailto:katayama@rku.ac.jp
mailto:katayama@rku.ac.jp

relaxation problem, it is desirable to solve the formu-
lation including forcing constraints. Column genera-
tion for path-flow variables and cutting plane for forc-
ing constraints can reduce the problem size and in-
crease solvability of the problem.

This paper presents a capacity scaling heuristic us-
ing column generation and cutting plane techniques for
solving SNDB with forcing constraints. Capacity scal-
ing is an approximate iterative solution approach based
on changing arc capacities and it can be produced most
convergence solutions. Capacity scaling produces
good solutions within a reasonable computation time
in general, but high-quality solutions may not be pro-
duced all the time. Restricted branch-and-bound is ap-
plied for the solutions derived from capacity scaling.
Restricted branch-and-bound is the method to solve
the problem which has restricted 0-1 variables. Conse-
quently local branching is applied for the best solution
of restricted branch-and-bound. Local branching is the
method to solve a new problem with the addition of
local branching constraints based on an exploration of
solution neighborhoods. A combined capacity scaling,
restricted branch-and-bound and local branching
matheuristic can produce good solutions compared to
previous approaches found in related literature for all
benchmark problems.

2. Mathematical Formulation
A network ()KANG ,,= is provided with a set of

nodes N , a set of directed arcs A and a set of com-
modities K . kd is defined as the demand of flow of
commodity Kk∈ from its single origin node to its
single destination node. −

nN is defined as the set of
outward nodes from node n , and +

nN is defined as the
set of inward nodes into node n . Let ijf be the fixed
cost of an asset on arc () Aji ∈, , k

ijc the unit variable
flow cost for commodity k flowing on arc ()ji, , and

ijC the limited arc capacity for all commodities.
The formulation of SNDB has two type variables.

The first type is a binary asset design variable. The as-
set design variable ijy indicates whether an asset is
used on arc ()ji, , 1=ijy , or not, 0=ijy in the net-
work design. The second type is a continuous path
flow variable. The path flow variable k

px represents
the amount of path flow of commodity flowing on path

kPp∈ . The constant p
ijδ indicates whether arc ()ji,

is included in path p , 1=p
ijδ , or not, 0=p

ijδ .
The path-flow based formulation SNDBP of SNDB

can be expressed as follows:
 (SNDBP)

min
() ()

∑∑ ∑ ∑
∈∈ ∈ ∈

+
Aji

ijij
Aji Kk Pp

k
p

p
ij

k
ij yfxc

k ,,

δ (1)

subject to
,Kkdx k

Pp

k
p

k

∈∀=∑
∈

 (2)

,0 Nnyy
nn Nj

nj
Ni

in ∈∀=− ∑∑
−+ ∈∈

 (3)

() ,, AjiyCx
Kk

ijij
Pp

k
p

p
ij

k

∈∀≤∑∑
∈ ∈

δ (4)

() ,,, KkAjiydx ij
k

Pp

k
p

p
ij

k

∈∈∀≤∑
∈

δ (5)

,,0 KkPpx kk
p ∈∈∀≥ (6)

{ } () .,1,0 Ajiyij ∈∀∈ (7)

The objective function (1) minimizes the total cost,
which is the sum of variable flow costs of commodities
plus the sum of fixed costs for assets in a given net-
work design. Equations (2) ensure flow conservations
such that the sum of path flows of commodity k is
equal to the demand. Equations (3) consist of the de-
sign balance constraints ensuring that the total number
of assets on arcs entering node n is equal to that of
assets on arcs leaving node n . Constraints (4) provide
the capacity constraints for assets and state that the to-
tal flow on arcs cannot exceed the capacity, if the asset
on arc ()ji, is used, 1=ijy , and must be 0 if the asset
is not used, 0=ijy . Constraints (5) provide the forcing
constraints for assets and commodities and state that
the flow for commodity k cannot exceed the demand,
if 1=ijy , and must be 0, if 0=ijy . Since forcing con-
straints are tight constraints for SNDB, a good lower
bound can be obtained from its linear relaxation prob-
lem of the strong formulations with the forcing con-
straints. As the forcing constraints are additional valid
constraints, the formulation removed the forcing con-
straints has the same optimal solution. Constraints (6)
and (7) are non-negativity and integrality conditions
for variables.

Let k
ijz be the arc flow variable for commodity k

flowing on arc ()ji, . The arc-flow based formulation
SNDBA of SNDB can be expressed as follows:

(SNDBA)
min

() ()
∑∑ ∑

∈∈ ∈

+
Aji

ijij
Aji Kk

k
ij

k
ij yfzc

,,

 (8)

subject to

,,

0

KkNn

otherwise
Dnifd
Onifd

zz kk

kk

Nj
nj

Ni
in

nn

∈∈∀









=
=−

=− ∑∑
−+ ∈∈ (9)

,0 Nnyy
nn Nj

nj
Ni

in ∈∀=− ∑∑
−+ ∈∈

 (10)

() ,, AjiyCz
Kk

ijij
k
ij ∈∀≤∑

∈

 (11)
() ,,, KkAjiydz ij

kk
ij ∈∈∀≤ (12)

() ,,,0 KkAjizk
ij ∈∈∀≥ (13)

{ } () .,1,0 Ajiyij ∈∀∈ (14)

Equations (9) are flow conservations and represent
relations between the sum of arc flows into node n
and the sum of arc flows out from node n for com-
modity k . Constraints (11) are the capacity constraints
for assets, and constraints (12) are the forcing con-
straints for assets and commodities.

Since the problem removed the design balance con-
straints from SNDB is reduced to the capacitated mul-
ticommodity network design problem, some heuristics
for the capacitated multicommodity network design
problem can be applied for solving SNDB without a
major change. In this paper, capacity scaling and re-
stricted branch-and-bound is applied for the path-flow
based formulation SNDBP using column generation
and cutting plane. Local branching is applied for the
arc-flow based formulation SNDBA.

3. Capacity Scaling
Capacity scaling represented an approximate itera-

tive solution approach for capacitated network prob-
lems based on changing arc capacities, which depend
on arc flows. As the design variable value derived
from the linear relaxation solution of SNDBP may be
a decimal fraction, the solution may not be approxima-
tion for finding a good feasible binary solution of
SNDBP. On the other hand, as almost the design vari-
ables of the solution derived from capacity scaling are
binary, the solution may be a good initial solution for
finding a good feasible binary solution of SNDB.

If the optimal path flow and the optimal arc flow of
SNDBP are found, we consider the problem changed
capacity to the optimal arc flow for each arc. When the
linear relaxation problem with the capacities is solved,
either 0 or 1 solutions for all design variables can be
obtained. Since SNDBP associated with all fixed de-
sign variables is reduced to a multicommodity flow
problem, the optimal objective value of SNDBP is ob-
tained. As a matter of course, finding the optimal flow
of SNDBP is our main purpose, and it is as hard as
solving SNDB. Consequently, if a near-optimal flow
can be found, the optimal arc flows can be estimated
and a good approximate solution could possibly be de-
rived from it. On the other hand, by changing capaci-
ties a little bit at a time, we may gradually identify the
near-optimal flow.

Capacity scaling proceeds by solving the linear re-
laxation problem of SNDBP associated with lC as
substitution for C at the iteration l . The linear relaxa-
tion problem LR(lC) with capacity lC can be ex-
pressed as follows:
(LR(lC))

min
() ()

∑∑ ∑ ∑
∈∈ ∈ ∈

+
Aji

ijij
Aji Kk Pp

k
p

p
ij

k
ij yfxc

k ,,

δ (15)

subject to
,Kkdx k

Pp

k
p

k

∈∀=∑
∈

 (16)

() ,, AjiyCx
Kk

ij
l
ij

Pp

k
p

p
ij

k

∈∀≤∑∑
∈ ∈

δ (17)

,0 Nnyy
nn Nj

nj
Ni

in ∈∀=− ∑∑
−+ ∈∈

 (18)

() ,,, KkAjiydx ij
k

Pp

k
p

p
ij

k

∈∈∀≤∑
∈

δ (19)

,,0 KkPpx kk
p ∈∈∀≥ (20)

() .,/0 AjiCCy l
ijijij ∈∀≤≤ (21)

ijC is replaced for l
ijC in the right-hand side of the

constraint (17), and the upper bound 1 is replaced for
l
ijij CC / to enable arc flow up to its original capacity

ijC in the right-hand side of the constraint (21).
Let ijX~ be the optimal arc flow on arc ()ji, of LR

(lC). At the next iteration, we substitute l
ijC with

() l
ijij CX λλ −+ 1~ , where ()10 ≤≤ λλ a smoothing pa-

rameter is designed to prevent rapid changes. If all de-
sign variables converge to zero or one in the solution
of LR(lC), then we solve the multicommodity net-
work flow problem associated with all fixed design
variables set to these convergent values, and both a
feasible solution and an upper bound of SNDBP can
be found. It may require numerous iterations for ob-
taining convergent solutions, otherwise few design
variables may not converge. Consequently when most
design variables converge to zero or one by a threshold
value ε , and the number of non-converged design var-
iable is less than or equal to a branch-and-bound exe-
cution parameter B , the branch-and-bound algorithm
of an MIP solver is applied for solving SNDBP asso-
ciated with non-convergent free variables, and the up-
per bound may be found. Let B∆ be subtracted from
B . After the restricted branch-and-bound algorithm,
B is reduced by B∆ , until minBB < . The capacity
scaling stops when the iteration number exceeds the
minimum iteration number minITE and an upper
bound UB has been found, or the iteration number ex-
ceeds the maximum iteration number maxITE . An out-
line of capacity scaling and restricted branch-and-
bound proceed as Algorithm 1.

 Algorithm 1: Capacity Scaling and Restricted

Branch-and-Bound
Set λ , ε , minITE , maxITE , B , minB and B∆ ;

CC =:1 ; ∞=:UB ; 1:=l ;
repeat

Solve LR(lC) by Column Generation and Cutting
Plane;
Get the arc flow solution X~ and the design solution
y~ of LR(lC);

for () Aji ∈, do

if ε<ijy~ then 0=ijy ;
else if ε−>1~

ijy then 1=ijy ;
else ijy is free;

end
if the number of free variables of y is less than B
then

Solve SNDBP associated with the restricted de-
sign variable y by an MIP solver;
Get the objective function value SNDBPZ and the
design solution y of SNDBP;

{ }BBBB ∆−= ,max: min ;
If UB<SNDBPZ then

SNDBP: ZUB = ;
1: += ll ;

for () Aji ∈, do
() 11~: −−+= l

ijij
l
ij CXC λλ

end
until minITEl > and ∞≠UB , or maxITEl >

4. Column Generation and Cutting Plane
In capacity scaling, the linear programming prob-

lem LR(lC) is solved iteratively. Since LR(lC) has
exponential number of path flow variables and the
forcing constraints of the number of ()AKO , all var-
iables and constraint should not be included in the
problem explicitly when solving large instances. In or-
der to solve larger instances efficiently, column gener-
ation can be applied for path flow variables and cutting
plane can be applied for forcing constraints.

At column generation procedure, we generate path
flow variables, which have the negative reduced cost
in the current problem. At cutting plane procedure, if
there are forcing constraints which are violated by the
current solution, these forcing constraints are gener-
ated and the new forcing constraints are added to the
forcing constraint set.

For each commodity k , let kk PP ⊂
~ be the initial

set of paths. Let KAKA ×⊂
~ , be the set of index of

current forcing constraints.
We reformulate the restricted problem, which has

restricted path sets P~ and restricted forcing constraint
set KA~ for LR(lC), as follows in RLR(KAPCl ~,~,):
(RLR(KAPCl ~,~,))

min
() ()

∑∑ ∑ ∑
∈∈ ∈ ∈

+
Aji

ijij
Aji Kk Pp

k
p

p
ij

k
ij yfxc

k ,, ~
δ (22)

subject to
,

~
Kkdx k

Pp

k
p

k

∈∀=∑
∈

 (23)

() ,,
~

AjiyCx
Kk

ij
l
ij

Pp

k
p

p
ij

k

∈∀≤∑∑
∈ ∈

δ (24)

,0 Nnyy
nn Nj

nj
Ni

in ∈∀=− ∑∑
−+ ∈∈

 (25)

() ,~,,
~

KAkjiydx ij
k

Pp

k
p

p
ij

k

∈∀≤∑
∈

δ (26)

,,~0 KkPpx kk
p ∈∈∀≥ (27)

() .,/0 AjiCCy l
ijijij ∈∀≤≤ (28)

Let s be the dual variable for the constraint (23),
()0≥u for the constraint (24), ()0≥w for the constraint

(26). If () KAkji ~,, ∉ , we assume that 0=k
ijw . By

solving RLR(KAPCl ~,~,) optimally, we get the opti-
mal dual solution ()wus ,, . The reduced cost of path
flow variable k

px is represented by:

()
()

.
,

k

Aji

p
ij

k
ijij

k
ij swuc −++∑

∈

δ (29)

A pricing problem is used for generating new vari-
ables. The pricing problem of RLR(KAPCl ~,~,) is re-
duced to shortest path problems for each commodity
k . As ks can be considered as a constant, the sepa-
rated pricing problem PPk for commodity k is ex-
pressed as follows:
(PPk)

()
()

∑ ∑
∈ ∈

++=
kPp

k
p

Aji

p
ij

k
ijij

k
ij

k xwucz
,

min δ (30)

subject to

,k

Pp

k
p dx

k

=∑
∈

 (31)

.0 kk
p Ppx ∈∀≥ (32)

Since PPk is the shortest path problem associated
with nonnegative arc length k

ijij
k
ij wuc ++ , it can be

solved efficiently by Dijkstra’s algorithm. Let p̂ be
the optimal path of PPk and kz be the length of p̂ . If

kk sz < , then the path flow variable k
px ˆ corresponding

to p̂ has negative reduced cost. Then path p̂ is added
to kP~ , and the new variable k

px ˆ is generated as a new
column.

By the solution of RLR(KAPCl ~,~,), the violated
forcing constraints are generated and the index of the
forcing constraints is added to KA~ , and we repeat to
solve RLR(KAPCl ~,~,). When no new path and no
path flow variable are generated, LR(lC) is solved op-
timally and the optimal solution of LR(lC) is the last
solution of RLR(KAPCl ~,~,). The algorithm of column
generation and cutting plane is summarized in Algo-
rithm 2.

In Algorithm 1, SNDBP must be solved when the
number of free variables of y is less than or equal to
B . Since solving this problem optimally is hard even
if it has restricted design variables, we solve SNDBP
associated with P~ instead of P as a path set and KA~
instead of A and K as the forcing constraint set. Fur-
thermore, if some upper bound UB of SNDBP has
been found, we add UB<SNDBPZ to SNDBP as a con-
straint, where SNDBPZ is the current best objective
function value of SNDBP. Let this restricted problem
be SNDBP(KAP ~,~). SNDBP(KAP ~,~) can be solved

comparatively easily.

Algorithm 2: Column Generation and Cutting Plane

Set P~ and φ=:~, KA ;
repeat

repeat
Solve RLR(KAPCl ~,~,) by an MIP solver;
Get the optimal dual solution (s , u , w) of
RLR(KAPCl ~,~,);
for Kk∈ do

Solve PPk;
Get the shortest path p̂ and the shortest path

length kz ;
if kk sz < then

p̂ is added to kP~ and generate path
variable k

px ˆ ;
end

until no path variable is generated
Get the optimal path flow x̂ and the optimal design
solution ŷ of LR(lC);
for () Aji ∈, do

 for Kk∈ do
if ij

k

Pp

k
p

p
ij ydx

k

ˆˆ ≤∑
∈

δ then

()kji ,, is add to KA~ ;
end

end
until no violated forcing constraint is generated

5. Local Branching
Although capacity scaling and restricted branch-

and-bound may produce good solutions within a rea-
sonable computation time in most cases, the method
may not always yield high-quality solutions. Conse-
quently, for improving the solutions, a kind of local
branching [10] is applied to solutions derived from ca-
pacity scaling and restricted branch-and-bound. Local
branching is the method to solve a new restricted prob-
lem based on an exploration of solution neighborhoods
defined by local branching constraints.

Given the feasible design solution y derived from
capacity scaling and restricted branch-and-bound, and
a neighborhood size parameter ()0>M , additional lo-
cal branching constraints are as follows:

()
() ()

,1
0|,1|,

Myy
ijij yAji

ij
yAji

ij ≤+− ∑∑
=∈=∈

 (33)

()
() ()

.11
0|,1|,

≥+− ∑∑
=∈=∈ ijij yAji
ij

yAji
ij yy (34)

The first branching constraint includes the domain of
OPTM − neighborhood of y and the second branch-

ing constraint excludes the current solution. Since the

feasible design solution of SNDBP is also clearly that
of SNDBA, the solution can be used for local branch-
ing of SNDBA. The reason for using SNDBA instead
of SNDBP(KAP ~,~) is that there is a possibility that
the optimal path set of SNDBA may not be included in
paths of the restricted path set of SNDBP(KAP ~,~).

We add the branching constraint (33) and (34) for
y to SNDBA, and solve the added problem by an MIP

solver. Since solving SNDBA optimally is hard, we set
a computation time limit T to solve SNDBA. If a bet-
ter feasible solution 'y than the current solution is
found within T , it becomes the new incumbent as

': yy = . Before this incumbent, we solve the problem
such that the constraint (33) is replaced by the follow-
ing constraint:

()
() ()

.11
0|,1|,

+≥+− ∑∑
=∈=∈

Myy
ijij yAji

ij
yAji

ij (34)

When a better solution cannot be found, M is re-
duced to ()1/ >∆∆ MMM) until minMM < .

Algorithm 3: Local Branching

Set y and UB by Capacity Scaling and Restricted
Branch-and-Bound;
Add the equation (33) and (34) to SNDBA;
repeat

Solve SNDBA within T ;
if a feasible solution of SNDBA is found then

Get the upper bound SNDBAZ and the feasible de-
sign solution 'y of SNDBA;
Remove the equation (33) and add the equation
(35) to SNDBA;

if UB<SNDBAZ then

SNDBAZ:=UB and ': yy = ;
Add the equation (33) and (34) to SNDBA;

else MMM ∆= /: ;
until minMM <

6. Computational Experiments
Experiments have been performed to evaluate the

performance of the combined matheuristic proposed in
this paper. The results of the combined matheuristic
are compared to optimal values or lower bounds by an
MIP solver, also compared to the results of parallel
tabu search [15], tabu assisted guided local search [4],
cutting-plane matheuristic [7] and three-phase
matheuristic [16]. To ensure comparisons, the same
two sets of problem instances as used for SNDB are
employed. The detailed description of these problem
instances is given in Pedersen et al. [15].

The first set of problem instances, denoted in cate-
gory “C,” consists of 24 instances characterized by the

number of nodes, arcs, and commodities. Two letters
are used to characterize the fixed cost level, “F” for
high and “V” for low relative to flow cost, and the ca-
pacity level, “T” for tight and “L” for loose relative to
total demand.

The second set of problem instances, denoted in
category “R,” consists of 54 instances divided into 6
groups ranging from r13 to r18. They are characterized
by three fixed cost levels, “F01,” “F05,” and “F10,”
and three capacity levels, “C1,” “C2,” and “C8.” If the
“F” value is small, the fixed cost is low, and if the “F”
value is large, the fixed cost is high relative to flow
costs. If the “C” value is small, the arc capacity is loose,
and if the “C” value is large, the arc capacity is tight
relative to total demand.

The experiments were performed on PCs with Pen-
tium i7 CPU 3.4GHz with four cores and 16GBytes
RAM. The computer code was written in C++ com-
piled on Ubuntu 11, and CPLEX 12, an MIP solver by
ILOG, was used for solving linear programming prob-
lems and mixed integer programming problems. In or-
der to access solution quality relative to optimal values
or lower bounds, all instances were solved by the
branch-and-bound algorithm of CPLEX, and a limit of
30 hours of computation time was imposed for each
instance. If the problem could not be solved optimally
within the computation time limit, the lower bound

found by the branch-and-bound algorithm was used in-
stead of the optimal value. The smoothing parameter λ
was calibrated from 0.025 to 0.250, and the neighbor-
hood size parameter M and the time limit T were
tested combinations (10, 1000 seconds), (10, 2000 sec-
onds) and (20, 2000 seconds). We set the parameters
as 01.0=ε , 150=B , 10min ==∆ BB , 2=∆M ,

1min =M , 50min =ITE , and 1000max =ITE .
Table 1 displays the average gaps of the results for

C-category problems. The average gaps are relative to
the optimal value or the lower bound by CPLEX for
the upper bound by each heuristic. Column PTAB is
the results by parallel tabu search, TGLS by tabu as-
sisted guided local search, CPM by cutting-plane
matheuristic, and TFM by three-phase matheuristic re-
spectively. Column RBB is the result by the capacity
scaling and restricted branch-and-bound excluding lo-
cal branching. Column 10-1000, 10-2000 and 20-2000
are the results of the combined matheuristic, and the
first number indicates M and the second number in-
dicates T . The average gap of three-phase matheuris-
tic, which is the best result among four previous heu-
ristics, is 1.18%. The average gap of the capacity scal-
ing and restricted branch-and-bound is 0.92%, and it is
better than that of three-phase matheuristic. Mean-
while the average gaps of the three combined

Table 1. Average Gap for C-category problems (%)
PTAB TGLS CPM TFM RBB 10-1000 10-2000 20-2000
4.55 2.55 2.30 1.18 0.92 0.69 0.66 0.65

Table 2. Results for C-category problems
N/A/K/FC OPT/LB PTAB TGLS CPM TFM RBB 10-1000 10-2000 20-2000

20/230/200/VL 97273.5O 101345 98760.0 98699 97274 97597.0 97273.5 97273.5 97273.5
20/230/200/FL 139395.0O 148384 142213.0 141744 139395 139831.0 139395.0 139395.0 139395.0
20/230/200/VT 100221.0O 103371 102137.3 103103 100720 100530.0 100221.0 100221.0 100221.0
20/230/200/FT 138856.3L 144766 141802.0 142638 138962 139253.0 139059.0 138962.0 138994.0
20/300/200/VL 77436.0O 80269 78787.0 79953 77584 77584.0 77502.0 77436.0 77502.0
20/300/200/FL 118152.4L 126258 121773.0 120979 119987 119324.3 119259.0 119259.0 119259.0
20/300/200/VT 76207.5O 78444 77066.0 76545 76450 76207.5 76207.5 76207.5 76207.5
20/300/200/FT 110669.0L 116338 114465.0 113412 111776 111462.0 111462.0 111462.0 111462.0
30/520/100/VL 54683.0O 55786 55422.0 55733 54783 54733.0 54683.0 54683.0 54683.0
30/520/100/FL 96582.9L 101612 100290.0 104235 100098 99193.0 98470.7 98519.0 98170.8
30/520/100/VT 53023.0O 54092 53744.0 53224 53035 53246.0 53023.0 53023.0 53023.0
30/520/100/FT 99668.7L 104702 103996.0 106251 101412 102043.0 101177.0 101229.0 101131.0
30/520/400/VL 114071.2L 118071 116196.0 115220 115528 114688.2 114565.1 114565.1 114565.1
30/520/400/FL 150503.6L 160979 154941.0 153737 153409 152893.4 152776.3 152776.3 152776.3
30/520/400/VT 116270.9L 120421 118335.7 117056 117226 116670.9 116670.9 116508.7 116616.4
30/520/400/FT 153109.0L 161987 157939.6 155942 155906 155121.0 155121.0 154820.2 154820.2
30/700/100/VL 48693.0O 49429 49221.0 49268 48807 48708.0 48693.0 48693.0 48693.0
30/700/100/FL 60853.6L 63292 62055.0 62267 61408 61528.0 61463.0 61331.0 61298.0
30/700/100/VT 46750.0O 47487 47518.0 46928 46812 47137.0 46750.0 46750.0 46750.0
30/700/100/FT 56131.0O 57187 57571.0 57701 56237 56609.0 56177.0 56169.0 56169.0
30/700/400/VL 98428.2L 103932 101609.5 99458 100589 99332.5 99332.5 99314.0 99314.0
30/700/400/FL 134240.0L 148114 142563.2 139607 141037 137889.0 137771.0 137724.2 137724.2
30/700/400/VT 96165.5L 103085 98656.8 97737 97875 97425.5 97329.0 97329.0 97278.0
30/700/400/FT 130234.7L 138609 135777.5 132855 133686 132486.7 132486.7 132486.7 132486.7

matheuristic are 0.69%, 0.66% and 0.65%, and these
are less than three-fifth of that of three-phase
matheuristic.

Table 2 displays the detailed results for C-category
problems. Column N/A/K/FC indicates the number of
nodes, arcs, commodities, the fixed cost level and the
capacity level. Column OPT/LB corresponds to the
optimal value or the lower bound by CPLEX. “O” in-
dicates that the optimal value is found, while “L” indi-
cates that the numerical value is the lower bound. A
numerical value in bold type is the optimal value,
while a numerical value in italic type is the best upper
bound except the optimal value. Three-phase
matheuristic find the optimal solutions for two in-
stances out of 24 instances, meanwhile the three com-
bined matheuristic find the optimal solutions for eight
or nine instances. Additionally, the combined
matheuristic 10-2000 find the new best upper bound
for 11 instances and 20-2000 find the new best upper
bound for 13 instances out of 16 instances to the ex-
clusion of the instances of which the optimal values

are found. Consequently, the combined matheuristic
can find the best solutions for all instances of C-cate-
gory problems.

Table 3 displays the average computation times in
CPU seconds for four previous heuristics, as well as
capacity scaling and restricted branch-and-bound, and
three combined matheuristic. The computational times
for four previous heuristics are reported in their papers.
Due to the fact that different CPUs are used, these
computation times cannot be compared directly. The
previous two heuristics were performed in a given
computation time limit such as 2400 or 3600 seconds.
The average computational time by the capacity scal-
ing and restricted branch-and-bound is relatively short
such as 524.1 seconds. The three combined matheuris-
tic can be solved within a reasonable average compu-
tation time such as 3780.2, 6928.4 or 8637.0 seconds.
Table 4 shows the detailed computation times for C-
category problems.

Table 5 displays the average gaps of the results for

Table 3. Average Computation Time for C-category problems (seconds)
PTAB TGLS CPM TFM RBB 10-1000 10-2000 20-2000
3600.0 2400.0 3581.4 7785.0 524.1 3780.2 6928.4 8637.0

Table 4. Computation Time for C-category problems (seconds)
N/A/K/FC CPM TFM RBB 10-1000 10-2000 20-2000

20/230/200/VL 635 5460 91.5 2500.7 3876.1 5579.7
20/230/200/FL 1026 5520 219.3 3652.1 5122.4 8836.8
20/230/200/VT 544 4680 46.3 1474.1 1465.1 4223.3
20/230/200/FT 634 5040 556.0 3831.0 12808.4 9577.5
20/300/200/VL 432 9720 78.8 4254.2 9722.6 8596.3
20/300/200/FL 1027 6600 421.1 5205.2 6683.2 9056.2
20/300/200/VT 283 5400 36.5 1267.5 1261.1 1976.6
20/300/200/FT 958 8460 605.5 3492.9 5489.8 7863.3
30/520/100/VL 225 5100 14.9 496.8 496.9 1606.7
30/520/100/FL 1630 7080 412.7 5803.4 6435.8 10337.4
30/520/100/VT 82 6180 10.2 2791.5 2796.0 5332.9
30/520/100/FT 870 9900 422.3 6507.8 14119.4 21799.0
30/520/400/VL 6830 13260 193.7 3283.5 6986.8 9283.5
30/520/400/FL 10529 8760 806.3 3009.7 5159.1 5213.6
30/520/400/VT 5413 12600 82.3 3426.5 13336.9 12285.8
30/520/400/FT 10696 8160 1292.9 4724.4 9752.0 11929.2
30/700/100/VL 101 4440 8.1 228.4 226.1 381.2
30/700/100/FL 631 9180 68.7 3414.0 12898.8 9823.1
30/700/100/VT 125 8100 16.7 4180.3 5349.3 8587.2
30/700/100/FT 309 9120 51.4 5078.8 8975.1 8211.8
30/700/400/VL 7893 8160 497.5 4086.0 9616.6 11660.6
30/700/400/FL 15723 4800 1317.7 5377.6 5742.8 7745.6
30/700/400/VT 8405 13320 1825.4 4953.2 7064.8 14481.3
30/700/400/FT 10953 7800 3503.5 7686.1 10897.5 12900.6

Table 5. Average Gap for R-category problems (%)

PTAB CPM TFM RBB 10-1000 10-2000 20-2000
4.56 2.75 0.76 0.75 0.20 0.18 0.15

R-category problems. The average gap of three-phase
matheuristic is 0.76%. In contrast, the average gap of
the capacity scaling and restricted branch-and-bound
is 0.75% and that of the three combined matheuristic
are only 0.20%, 0.18% and 0.15%. The gap of the ca-
pacity scaling and restricted branch-and-bound is as
the same as that of three-phase matheuristic, and the
gap of the combined matheuristic 20-2000 is only
about one-fifth of that of three-phase matheuristic.

Table 6 and 7 displays the detailed results for R-
category problems. The three combined matheuristic
can find the optimal solutions for 42 instances out of
54 instances and find the new best upper bound for 14
instances to the exclusion of the instances of which the
optimal values are found. Consequently, the combined
matheuristic can find the best solutions for all in-
stances of R-category problems.

Table 8 displays the average computation times in
CPU seconds for three previous heuristics, these com-
putational times of which are reported in their papers,
the capacity scaling and restricted branch-and-bound,
and the three combined matheuristic. When compared
to previous heuristics, the computational times by ca-
pacity scaling are relatively short such as 251.3 sec-
onds. The three combined matheuristic can be solved
within a reasonable computation time such as 2283.5,
3691.4 or 5074.2 seconds.

According to the results, the capacity scaling and
restricted branch-and-bound can offer good quality re-
sults and the computational time is relatively short.

The combined capacity scaling, restricted branch-and-
bound and local branching matheuristic can obtain
good solutions within a reasonable computation time,
and improve the current best solutions or find the op-
timal solutions for the all C and R-category problems.

7. Conclusion
This paper presents the combined capacity scaling,

restricted branch-and-bound and local branching
matheuristic, which is applied to column generation
and cutting plane techniques for SNDB characterized
by the strong formulation. The performance of the pro-
posed matheuristic is evaluated by solving C and R-
category problems. The numerical results are satisfac-
tory, while the combined matheuristic can find the best
new solutions or the optimal solutions for all instances
of C-category and R-category problems.

The capacity scaling excluding local branching can
offer good quality results and the computational effort
can be reduced considerably. The combined capacity
scaling, restricted branch-and-bound and local branch-
ing matheuristic can offer highest quality results and
outperforms previous heuristics proposed in the litera-
ture.

Acknowledgments
This work was supported by Grant-in-Aid for Sci-

entific Research 25350454.

References

Table 6. Results for R-category problems
 C F OPT/LB PTAB CPM TFM RBB 10-1000 10-2000 20-2000
 F01 147349.0O 147349 148494 147349 147349.0 147349.0 147349.0 147349.0
 C1 F05 277891.0O 281668 298494 279389 277891.0 277891.0 277891.0 277891.0
 F10 385396.0O 400656 417877 385396 388408.0 385396.0 385396.0 385396.0
 F01 155887.0O 156585 155887 156616 156386.0 155887.0 155887.0 155887.0

r13 C2 F05 295180.0O 307180 298582 295180 296556.0 295180.0 295180.0 295180.0
 F10 431140.0O 437396 454625 434383 433117.0 431140.0 431140.0 431140.0
 F01 218787.0O 223541 224632 218787 221091.0 218787.0 218787.0 218787.0
 C8 F05 491560.0O 510887 497877 492959 495090.0 491560.0 491560.0 491603.0
 F10 782049.0O 839174 798947 791213 796897.0 782049.0 782049.0 782049.0
 F01 422709.0O 427872 423538 422709 422709.0 422709.0 422709.0 422709.0
 C1 F05 784626.0O 811102 812423 784626 785754.0 784626.0 784626.0 784626.0
 F10 1119569.0O 1157500 1156950 1137820 1126879.0 1120185.0 1120185.0 1120185.0
 F01 452591.0O 458240 457421 453434 452591.0 452591.0 452591.0 452591.0

r14 C2 F05 883051.0O 917832 890673 891138 887334.0 883051.0 883051.0 883051.0
 F10 1296477.0O 1356910 1336490 1307770 1303528.0 1296477.0 1296477.0 1296477.0
 F01 702614.2O 720494 708444 702614 704203.0 702614.2 702614.2 702614.2
 C8 F05 1685913.1L 1795650 1706840 1693240 1692473.3 1689071.0 1689071.0 1688981.0
 F10 2755700.0O 2997290 2772750 2769360 2786173.0 2756790.0 2757353.0 2755700.0
 F01 1017740.0O 1032640 1019180 1017740 1018193.0 1017740.0 1017740.0 1017740.0
 C1 F05 2008205.5O 2082990 2028140 2055803 2012100.0 2009112.0 2008205.5 2008205.5
 F10 2904651.8L 3116770 3003990 2971500 2985328.0 2973425.5 2978364.0 2966146.0
 F01 1174517.5O 1191440 1182020 1174520 1174959.0 1174517.5 1174517.5 1174517.5

r15 C2 F05 2535837.5L 2698680 2574700 2561060 2553657.0 2553657.0 2553657.0 2553657.0
 F10 3947038.7L 4310340 4176330 4045030 4041668.5 4032778.0 4034439.0 4010444.0
 F01 2401115.0O 2465650 2403330 2408210 2402126.2 2401115.0 2401115.0 2401115.0
 C8 F05 5795320.0O 5969370 5797170 5796510 5797171.0 5796508.0 5796508.0 5795320.0
 F10 9105014.0O 9304650 9115830 9129360 9105014.0 9105014.0 9105014.0 9105014.0

[1] J. Andersen, M. Christiansen T. G. Crainic, and R.
Grønhaug, “Branch and price for service network
design with asset management constraints”,
Transportation Science, Vol. 45, No. 1, pp. 33–49,
2011.

 [2] J. Andersen, T. G. Crainic, and M. Christiansen,
“Service network design with management and
coordination of multiple fleets”, European Journal
of Operational Research, Vol. 193, No. 2, pp. 377–
389, 2009.

 [3] R. Bai, G. Kendal, and J. Li, “An efficient guided
local search approach for service network design
problem with asset balancing”, ICLSIM, Vol. 1,
pp. 110–115, 2010.

[4] R. Bai, G. Kendal, R. Qu, and J. Atkin, “Tabu as-
sisted guided local search approaches for freight
service network design”, Information Science, Vol.
189, No. 15, pp. 266–281, 2012.

 [5] A. Balakrishnan, T. L. Magnanti, and P. Mirchan-
dani, “Network design”, In M. Dell’Amico, F.
Maffioli and S. Martello, editors, Annotated Bib-
liographies in Combinatorial Optimization, pp.
311–334. John Wiley & Sons, New York, 1997.

 [6] M. Chouman and T. G. Crainic, “MIP-based tabu
search for service network design with design-bal-

anced requirements”, Technical Report CIR-
RELT-2011-68, Centre de recherche sur les trans-
ports, Universitè de Montrèal, 2011.

 [7] M. Choumann and T.G. Crainic, “Cutting-plane
matheuristic for service network design with de-
sign-balanced requirements”, Transportation Sci-
ence, 2014.

 [8] A. M. Costa, “A survey on benders decomposi-
tion applied to fixed-charge network design prob-
lems”, Computers and Operations Research, Vol.
32, pp. 1429 – 1450, 2005.

 [9] T. G. Crainic, “Long-haul freight transportation”,
In R. W. Hall, editor, Handbook of Transportation
Science, pp. 451–516. Kluwer Academic Publish-
ers, 2003.

 [10] M. Matteo Fischetti and A. Lodi, “Local branch-
ing”, Mathematical Programming, Vol. 98, No.1-
3, pp. 23–47, 2003.

 [11] B. Gendron, T. G. Crainic, and A. Frangioni,
“Multicommodity capacitated network design”,
Technical Report CIRRELT-98-14, Centre de re-
cherche sur les transports, Universitè de Montrèal,
1997.

 [12] N. Katayama and S. Yurimoto, “Combining ca-
pacity scaling and local branch approaches for the
logistics network design problem”, In Proceedings

Table 7. Results for R-category problems
 C F OPT/LB PTAB CPM TFM RBB 10-1000 10-2000 20-2000

 F01 140082.0O 140149 142797 140082 140082.0 140082.0 140082.0 140082.0
 C1 F05 248703.0O 261775 277712 248703 253681.0 248703.0 248703.0 248703.0
 F10 340641.0O 360884 359648 350958 348522.0 340641.0 340641.0 340641.0
 F01 142381.0O 143921 159168 142605 142507.0 142381.0 142381.0 142381.0

r16 C2 F05 259313.0O 273024 285509 260822 259313.0 259313.0 259313.0 259313.0
 F10 361626.0O 387601 376114 368572 367947.0 361626.0 361626.0 361626.0
 F01 179639.0O 185397 183475 180228 184624.0 179639.0 179639.0 179639.0
 C8 F05 387360.0O 419945 393541 388180 394679.0 387360.0 387360.0 387360.0
 F10 596660.0O 647212 610267 598835 612353.0 597997.0 597997.0 596660.0
 F01 364784.0O 365913 368841 365788 364784.0 364784.0 364784.0 364784.0
 C1 F05 675029.0O 702957 717089 676528 678282.0 675029.0 675029.0 675029.0
 F10 947172.0O 1026040 991205 966116 969046.0 947172.0 947172.0 947172.0
 F01 382593.0O 389249 388625 384579 383076.0 382593.0 382593.0 382593.0

r17 C2 F05 734117.0O 786198 744146 741744 738944.0 734117.0 734117.0 734117.0
 F10 1066292.0O 1159440 1126380 1086640 1066292.0 1066292.0 1066292.0 1066292.0
 F01 528923.0O 539817 535474 529876 529395.0 528923.0 528923.0 528923.0
 C8 F05 1213747.3L 1323330 1241990 1230910 1228640.0 1223768.0 1223698.0 1224001.0
 F10 1974056.8L 2207590 2064630 1999950 2007426.0 1997521.0 1997521.0 1996006.3
 F01 844211.0O 864425 848636 844260 846124.0 844211.0 844211.0 844211.0
 C1 F05 1572707.0O 1627700 1615730 1588890 1575173.0 1572707.0 1572707.0 1572707.0
 F10 2203024.0L 2366280 2286290 2264470 2258224.0 2245541.0 2229722.0 2229722.0
 F01 940627.8O 962402 945562 944708 942127.0 940627.8 940627.8 940627.8

r18 C2 F05 1842533.8L 1958160 1904830 1883870 1879801.0 1873989.0 1871741.0 1873989.0
 F10 2734321.6L 2986000 2809030 2806020 2801704.0 2792872.0 2793627.0 2793316.7
 F01 1525156.8L 1613790 1547430 1542500 1535767.9 1534743.0 1533160.0 1533402.9
 C8 F05 3961276.9O 4268580 3961280 4039410 3974511.6 3974511.6 3961276.9 3961276.9
 F10 6550762.5O 7194120 6602450 6603500 6579400.3 6570234.2 6554028.5 6554028.5

Table 8. Average Computation Time for R-category problems (seconds)
PTAB CPM TFM RBB 10-1000 10-2000 20-2000

3600.0 1004.1 5711.1 251.3 2283.5 3691.4 5074.2

of the 21th International Conference on Produc-
tion Research, Stuttgart, Germany, 2011.

 [13] T. L. Magnanti and R. T. Wong, “Network de-
sign and transportation planning: Models and al-
gorithms”, Transportation Science, Vol. 18, pp. 1–
55, 1984.

[14] M. Minoux, “Network synthesis and optimum
network design problems: Models, solution meth-
ods and applications”, Networks, Vol. 19, pp.
313–360, 1989.

 [15] M.B. Pedersen, T.G. Crainic, and O.B.G, “Mad-
sen. Models and tabu search metaheuristics for
service network design with asset-balance require-
ments”, Transportation Science, Vol. 43, pp. 158–
177, 2009.

 [16] D.M. Vu, T.G. Crainic, and M. Toulousein, “A
three-phase matheuristic for capacitated multi-
commodity fixed-cost network design with de-
sign-balance constraints”, Journal of Heuristic,
Vol. 19, pp. 57–795, 2013.

 [17] R. T. Wong, “Location and network design” , In
M. O’heEigeartaigh, J. Lenstra, and A.
RinnooyKan, editors, Combinatorial Optimization

Annotated Bibliographies, pp. 129–147. John
Wiley & Sons, New York, 1985.

 [18] M. Yaghini and M. Rahbar, “Multicommodity
network design problem in rail freight transporta-
tion planning”, Procardia Social and Behavioral
Sciences, Vol. 43, pp. 728–739, 2012.

Naoto Katayama is a professor in the Faculty of
Distribution and Logistics
Systems, Ryutsu Keizai
University. He received his
Ph.D. degree in Ryutsu
Keizai University in 2010.
His research interests are in
the area of network design
problems. He is a member
of the Japan Industrial Man-
agement Association
(JIMA), the Operations Re-

search Society of Japan (ORSJ), Japan Society of
Civil Engineers (JSCE), and the Institute for Oper-
ations Research and Management Science (IN-
FORMS)

	repeat
	end
	repeat
	repeat
	end
	repeat

