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ABSTRUCT 

The main stress in the load planning problem for less-than-truckload (LTL) motor carriers 

falls on determining how to consolidate freight on small-lot consignment over a load planning 

network including break-bulk terminals. The goal of this problem is to minimize the total 

line-haul cost under the condition that the minimum frequency of delivery per week between 

a pair of terminals must satisfy a given service level. In this study, we propose a load planning 

model and new algorithm using a Lagrangian relaxation method. Numerical experiments are 

presented to evaluate the effectiveness of our Lagrangian relaxation method.  

 

INTRODUCTION 

Progress of the supply chain management and the current trend toward deregulation of the 

Japanese trucking industry places the freight motor carriers in a highly competitive 

environment. As a result of that, the carriers need to consider strategies and tactics that satisfy 

both cost minimization and a definite level of service quality. In general, a less-than-truckload 

motor carrier hauls shipments in the range of 50kg to 5000kg. Since a standard trailer can 

hold 10-ton to 30-ton of shipment, it is necessary for the LTL motor carriers to consolidate the 

freight to make the best use of trailers. The freight originating at an end-of-line is loaded onto 

a line-haul truck, which carries it to a break-bulk terminal. At this terminal, the freight is 

unloaded, sorted and reloaded onto a trailer, which carries it to another terminal. One of the 

main problems faced by LTL motor carriers is to determine how freight should be routed over 

the network. This problem is called the load planning problem for LTL motor carriers. It can 

be formulated as a huge mixed integer optimization problem.  

 

Previous research on this problem is limited. Powell (1986) and Powell-Sheffi (1989) propose 

heuristic approaches using add-drop local search methods. Crainic-Roy (1992) describes a 

set-covering formulation and a solution method for the load planning problem. 

Powell-Delorme (1989) presents so-called NETPLAN, and Powell-Koskosidis (1992) uses a 

gradient-based local search method and the Lagrangian heuristic approach with a relaxation of 

minimum service level constraints. Hoppe et al.(1999) proposes a heuristic approach using the 

labeling algorithm and add-drop local search methods. Crainic (1999) surveys wide variety of 

freight transportation planning problems.  

 

The principal concern in the load planning problem is about determining how to consolidate 

freight on small-lot consignment over a load planning network including break-bulk terminals 

in order to minimize the total line-haul cost. This problem is approached as a two-tiered 

problem: 1) between which pairs of terminals should direct service be offered, 2) given a set 

of direct services, how should the freight be routed over the network. This problem is 

formulated as follows: 1) line-haul costs between terminals should be minimized, 2) the 

minimum frequency of delivery per week between a pair of terminals must satisfy a given 

service level, 3) the paths from all origin terminals into a destination terminal form a tree, 

which reflects that the freight at a terminal with same destination should be loaded onto a 
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truck heading for one terminal. 

Figure 1 illustrates an example of the 

load planning network. Figure 2 

illustrates frequency of service 

between a pair of terminals. In this 

study, we propose a load planning 

model and new algorithm using a 

Lagrangian relaxation method. 

 

FORMULATION FOR THE 

LOAD PLANNING PROBLEM 

The load planning problem can be 

formulated as a mixed integer 

programming problem. We use the 

following notation for our model. N 

is the set of nodes, which consists of 

end-of-line and break-bulk terminals. 

A is the set of all potential links for 

direct services in the load planning 

network, NNA  . fij is the 

minimum frequency of trailers per 

week on the link (i,j) from node i to j, 

(i,j)A. eij is the load capacity of a 

trailer on the link (i,j). aij is the 

line-haul cost per trailer on the link 

(i,j). q
od 

is the total LTL freight 

demand of commodity (o,d) 

originating at terminal o and destined 

for terminal d per week, oN, dN. 

 n
od 

is a constant, which equals to 1 

if node n is destination d, -1 if node n 

is origin o and 0 otherwise, n,o,dN. 

zij is the total line-haul cost on the 

link (i,j). xij is the total freight flow on 

the link (i,j). xij
od 

is the binary 

decision variable, which equals to 1 if 

the freight flow of commodity (o,d) is 

routed on the link (i,j) and 0 if not. yij is the binary decision variable, which equals to 1 if a 

direct service is being offered on the link (i,j) and 0 if not. yij
d 
is the binary decision variable, 

which equals to 1 if the freight flow destined for terminal d is routed on the link(i,j) and 0 if 

not. 

 

The load planning problem can be stated as follows. 

(LTL)  minimize 
  Aji ijij yz

,
       (1) 

      subject to     


Ni Nj

od

n

od
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No Nd

od
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od
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d

ij  ,,  (5) 

 

 

Break-Bulk Terminal 

Direct Service 

End-of-Line Terminal 

Figure 1. Illustrative Load Planning Network 
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Figure 2. Frequency of Direct Service between a Pair of Terminals 
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The objective function (1) is the total line-haul cost and should be minimized. Constraint (2) 

expresses the standard flow conservation. Constraint (3) shows the relationship between the 

total freight flow and the demands of commodity (o,d). Constraint (4) states that if the flow 

destined for d is not routed on the link(i,j), then the flow of every commodity (o,d) on the link 

(i,j) must be zero. Constraint (5) states that if the direct service on the link (i,j) is not being 

offered, then the flow destined for d must not be routed on the link (i,j). Constraints (6) and 

(7) insure that the paths from all origin terminals into a destination terminal form a tree. 

Constraint (8) states that the minimum frequency of deliveries between a pair of terminals 

must satisfy a given service level. Constraints (9), (10) and (11) are the binary requirements. 

 

A LAGRANGIAN RELAXATION PROBLEM 
The Lagrangian relaxation is one of general solution strategies for solving mathematical 

programming problems that permit us to decompose problems to exploit their special 

structure. When we use vectors of the Lagrange multipliers v={vi
od

} relative to constraint (2) 

and w={wi
d
} relative to (6) and (7), and add them to the objective function (1), the following 

Lagrangian relaxation problem LG can be formed. 

(LG)  minimize 
 

  
      


Aji Nd

d
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d

i

od
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j
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iAji ijij ywxvvyz
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 
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o
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d wvv
\

    (12) 

subject to    (3)-(5) and (8)-(11) 

where wi
d
 0, iN \ {d}, dN. 

 

Given the Lagrange multipliers v and w, we can deal with the third and the fourth terms of the 

objective function (12) as constant terms. LG can be decomposed into following subproblem 

LGij for each link (i,j). 

(LGij)  minimize     

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  Ndyd
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Furthermore, LGij can be decomposed into following two subproblems, LGij
1

 and LGij
2
. 

(LGij
1
)  minimize     


Nd

d

ij

d

i
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j
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2
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
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d
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d

i
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subject to ijijNo Nd

od

ij

od efxq   
      (23) 

(14),(15) and (17)-(19) 

 

When we give the Lagrange multipliers v and w, and solve the Lagrangian relaxation problem 

LG or further a relaxation problem optimally, a lower bound for LTL can be obtained. 

 

A OPTIMAL SOLUTION FOR A LAGRANGIAN RELAXATION PROBLEM 

At first, we assume that the Lagrange multipliers v are given and let w=0. Then LGij
1
 can be 

rewritten as a simple problem. 

minimize    


Nd

od

ijNo

od

j

od

iijij

od

ij xvvyeqa /            (24) 

subject to     NdNoyx ij

od

ij  ,       (25) 

 (17), (18) and (21) 

 

We decompose this problem into two subproblems in the case of yij=0 and yij=1. Obviously, 

when yij=0, the optimal solution is xij
od

=0( o,dN) and the optimal value of equation (24) is 

0. When yij=1, this problem can be rewritten as the following 0-1 knapsack problem LGij
11

.  

(LGij
11

)  1

ij minimize    


Nd

od

ijNo

od

j

od

iij

od

ij xvveqa /              (26) 

subject to  (17) and (21) 

This problem relaxed 0-1 conditions turn out to be the continuous knapsack problem and can 

be simply solved by sorting, and then a lower bound and the relaxation solution for LGij
11

 are 

easily obtained. Accordingly the lower bound for LGij
1 

is min{0, ij
1
}, which is the minimum 

value of the optimum in the case of yij=0 and yij=1. 

 

As with LGij
1
, LGij

2 
can be decomposed into two cases of yij=0 and yij=1. When yij=1, this 

problem can be rewritten as the following problem LGij
21

. 

(LGij
21

)  2

ij minimize    


Nd

od

ijNo

od

j

od

iijij xvvfa             (27) 

subject to   (17) and (23)  

 

Consequently the optimal value or the lower bound for LG is  

   
        


Aji Nd dNi

d

iNd No

od

o

od

dijij wvvmin
, \

21 ,,0  .   (28) 

For (i,j)A, the optimal solution is yij=1 if ij
1
<0 or ij

2
<0 and yij=0 if not. For oN, dN, 

(i,j)A, the optimal value of xij
od

 is Xij
od1

 if ij
1
  ij

2
 and yij=1, Xij

od2
 if ij

2
< ij

1
 and yij=1, 

and 0 otherwise, where Xij
od1 

is the solution for LGij
11 

and Xij
od2 

is the solution for LGij
21

. 

Additionally, for dN, (i,j)A, the optimal solution is yij
d
=1 if some xij

od
>0(oN) and yij

d
=0 

if not, because w=0. From these expressions, we can solve the Lagrangian relaxation problem 

LG and obtain the lower bound for the load planning problem LTL. 

 

A MULTIPLIER ADJUSTMENT AND A SUBGRADIENT METHOD 

We develop the multiplier adjustment method for setting the value of w. Increasing the value 

of w from 0, while w is feasible and the solution x and y for LG do not change, we could also 

increase the lower bound for LTL. 

 

For LGij
1
, let  NdNoxvvyeqaminmin od

ij

od

j

od

iijij

od

iji  ,,0|/{1  
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j
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For LGij
2
, let  NdNoxvvminmin od
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od
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Then we set the increment value of w as 

     ,,\,,,,0: 2121 NddNiminmaxw d

i

d

iii

d

i    2 d

iKif ,  (31) 

where  

 
 

   






Nd dNd

d

i

od

ijNo

od

j

od

iijij

od

ij

d

i Njwxvvyeqamin |/
\

1  (32) 

 
 

 Njwxvvfamin
Nd dNd

d

i

od

ijNo

od

j

od

iijij

d

i    




|

\

2   (33) 

 NjNoxxK od

ij

od

ij

d

i  ,,0| ofnumber  the .    (34) 

When the values of w ascend up to these values, w is feasible because wi
d

0 , and the optimal 

solutions for LG still do not change. Then the lower bound can be increased as much as 

 
   


Nd dNi

d

i

d

i Kw
\

1 .       (35) 

The first term wi
d
Ki

d
 is the increment value of the second term in (12) and the second term 

-wi
d
 is the decrement value of the fourth term in (12). 

 

For setting the values of v approximately, we apply the standard subgradient optimization 

procedure (Fisher,1981). This is an iterative procedure, which uses the current multipliers v, 

the current lower bound and an upper bound, in order to compute the new multipliers v used 

in the next iteration. Subgradient g of v can be defined follows, 

  


Ni Nj

od

nj

od

in

od

n

od

n NdNoNnxxg ,, .   (36) 

Then, using a step size s
t
 in iteration t, the new set of multipliers are given by 

NdNoNngsvv od

n

tod

n

od

n  ,,: .     (37) 

It can be shown for a finite cardinality, if the step size s
t 

is selected so that 

0lim 

t

t s ,while 


0t

ts , then the sequence v converges to the optimal value. We use 

the step size as 

  2
/boundlower current   the- upperboundknown best  the g tt ps  (38) 

where p
t
 is a scalar which is initially equal to 1 and is reduced every some iteration number. 

 

NUMERICAL EXPERIMENTS 

In order to test the performance of our Lagrangian relaxation method, a set of numerical 

experiments is carried out using IBM compatible computer with PENTIUM4 1.7GHz, 

memory 256Mb and OS Windows 2000. This solution method is coded in COMPAQ 

VISUAL FORTRAN Ver.6. The problem data used in these experiments is randomly 

generated up to 50 nodes. N, the set of nodes presented end-of-line and break-bulk terminals 

is drawn from a uniform distribution over a rectangle measuring 100 by 100. A, the set of all 

potential links of direct services is NN. The line-haul cost per trailer on the link is in 

proportion to the Euclidean distance between 

nodes. Each of LTL freight demand is 1, the 

minimum frequency is 1 and the load capacity 

is |N|.  

 

Obtaining for an upper bound and approximate 

solutions, we use three kinds of Lagrangian 

heuristic algorithms (Katayama,2002), which 

|N | |A| Commodity Gap(%)

10 90 90 1.90%

20 380 380 3.39%

30 870 870 3.72%

40 1560 1560 5.31%

50 2450 2450 6.32%

Table 1. Network Dimensions and Gaps
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are a link delete heuristic, a 

successor matrix modification 

heuristic and a tabu search 

method.  

 

Table 1 briefly summarizes the 

effectiveness of the Lagrangian 

relaxation method. It shows the 

number of nodes, potential 

direct services, commodity and 

the percentage gap between the 

best upper bound and the best 

lower bound. The percentage 

gaps range from 1.90% to 

6.32%. Figure 3 shows the rate 

of convergence for the problem with 30 nodes. The subgradient optimization algorithm 

exhibited the fastest rate of convergence. 

 

CONCLUSIONS 

In this paper, we developed the load planning problem for LTL motor carriers and its solution 

method using the Lagrangian relaxation. The result of the experiments suggest that our 

Lagrangian relaxation problem and solution approach can perform a good job of identifying a 

lower bound of the load planning problem for LTL motor carriers. This research is underway 

to adapt solutions to the real world problems, such as the empty trailer balancing, the transit 

time and the number of transshipment, etc. 

 

REFERENCES 

Crainic T G and Roy J (1992) “Design of regular intercity driver routes for the LTL motor 

carrier industry”, Transportation Science, 26, 280-295. 

Crainic T G (1999) “Long-Haul Freight Transportation”, in Handbook of Transportation 

Science,433-494, Kluwer Academic Publishers, Boston. 

Fisher M L (1981) “The Lagrangian relaxation method for solving integer programming 

problem”, Management Science, 27, 1-18. 

Hoppe B, Klampfl E Z, McZeal C and Rich J (1999) “Strategic load-planning for 

less-than-truckload trucking”, CRPC-TR99812-S, Center for Research on Parallel   

Computation, Rice University. 

Katayama N (2002) “Heuristics for the less-than-truckload planning problem”, Working Paper, 

Ryutsu Keizai University (in Japanese). 

Powell W B (1986) “A local improvement heuristic for the design of less-than-truckload  

motor carrier networks”, Transportation Science, 20, 246—257. 

Powell W B and Koskosidis I A (1992)“Shipment routing algorithms with tree constraints”, 

Transportation Science, 26, 230-245. 

Powell W B and Sheffi Y (1989) “Design and implementation of an interactive optimization 

system for network design in the motor carrier industry, Operations Research, 37, 12-29. 

Roy J and Delorme L (1989) “NETPLAN:A network optimization model for tactical planning 

in the less-than-truckload motor-carrier industry”, INFOR, 27, 22-35. 

Roy J and Crainic T G (1992) “Improving intercity freight routing with a tactical planning 

model”, Interfaces, 22, 31-44. 

Figure 3. Convergence of method for 30 nodes
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