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Basic, strong and extended formulation

Capacity scaling procedure

Demand of multi-commodities

Arc capacities

Piecewise linear flow cost function

The total flow costs is minimized

The design of the network and paths of the multi-

commodity flows is found

The multi-commodity capacitated network design

problem with piecewise linear costs

Introduction
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Node

Flow

Arc

Demand

Node:distribution center

Arc: less-than-truckload     
service or a feeder service

Demand: freight from 
origin to destination

Flow: freight flow from 
origin to destination

Multi-commodity network design model
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Notations

N ：set of nodes

A ：set of arcs

An
+ ：set of arcs, which go in from another node

An
- ：set of arcs, which go out to another node

K ：set of commodities

Sa ：set of segments in a piecewise linear function

Ok   ：origin node for commodity k

Dk ：destination node for commodity kIFORS2006 HONG KONG
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Notations

dk ：demand of commodity k

Xa ：flow variable on the arc a

ξa
s ：flow variable in segment s on arc a

xa
k   ：flow variable on arc a of commodity k

ys
a   ：design variable of segment s on arc a

ga(Xa)： flow cost function on arc a

IFORS2006 HONG KONG



7

Piecewise linear cost function

Cost

ba
sba

s-1ba
s-2

segment

0 Arc flow
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Segment of a piecewise linear function

If a flow lies in segment s, ,otherwise
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Strong model (PLCS)             Croxton et al.(2004)
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s.t.   

When arc a has no flow, the sum of design variable = 0 

and  the flow of each commodity = 0

When arc a carries flow, the sum of design variable = 1 

and flow of commodity k <= dk

(9)
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: extend flow variables for commodity k, segment s and arc a

Extend model (PLCE)
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xa
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disaggregate for 

section s of (9)
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Extend model (PLCE) Croxton et al.(2004)
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Capacity scaling procedure

PLCB, PLCS and PLCE are mixed integer 

programming problems

It is difficult to solve these problems by mathematical

programming software directly.

We present approximate methods with a capacity

scaling procedure.
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Capacity scaling procedure

Arc capacities change based on flow solutions of a 
linear relaxation problem.

The linear relaxation problem is solved.

Above procures are repeated.

Approximate solutions are derived from relaxed
solutions
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Capacity scaling procedure

ga(Xa)
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Lower bound =0

capacity of arc3 = ba
3

Each segment of arc a → one arc

segment 2

Lower bound =0
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2
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Lower bound =0

capacity of arc1 = ba
1

IFORS2006 HONG KONG



17

Capacity scaling procedure for PLCB

Change to the capacitated problem
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Once b’sa <= the optimal flow of PLCB, 

the optimal  solution can never be 

obtained.

Capacity scaling procedure for PLCB
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Capacity scaling procedure for PLCB

Change capacity by the smoothing parameter λ

 Prevent large variations of
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Approximate method for PLCB

Solve PLCBL(b’) iteratively
All variable do not always become 0 or 1.

It is possible that several of same arc is positive.

No guarantee that is satisfied the equation (6).

Fix design variable to 0 or 1

Design variable satisfies equation 6
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Approximate method for PLCB

Fix the feasible design variables by 
linear relaxed solution
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 Slove PLCB( ) for obtaining upper bounds and feasible

solutions of PLCB.
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Capacity scaling procedure for PLCB
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Solve PLCB( ) and obtain ub(t). If ubmin＞ub(t), ubmin :=ub(t)

1) set λ∈(0,1], tg, tmax. b’
s
a:=bs

a. ubmin:=∞ , t := 0.

Capacity scaling procedure for PLCB

Algorithm

2) t:=t+1．Solve linear relaxed problem PLCBL(b’). Obtain the 

linear relaxed solutions      andaX
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Numerical Experiments

Data ：Crainic’s data for capacitated network design 
problem

a) Variable flow cost ca
s : ca

s=caα
s-1, 

ca = Crainic’s data ,α=0.7

b) Fixed flow cost : fa
1 = Crainic’s data,

others→ continue at the lower bound of segments

c) Number of Segment |Sa| : 3

d) Upper bound of s : ba
s= (2s –1) ba / 2, 

ba = Crainic’s data
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Numerical Experiments

Error ： (upper bound –lower bound)/lower bound

Upper bound ：our method

Lower bound: software CPLEX within 10 hours

Software for PLCBL(b’) ： GLPK ver.4.8

Computing time ：max 10 hours

Maximum iteration number ：100 

Search cycle for upper bound ：5

Language ：C

Computer ：Pentium 3.0GHz and 1Gbyte memories
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Results

time: seconds

Gaps(%) Tims Gaps(%) Tims Gaps(%) Tims

1 25 100 10 52.3 3 7.3 16 4.7 308

2 25 100 10 22.2 3 5.6 30 2.8 185

3 25 100 10 2.7 3 0.8 12 0.0 287

4 25 100 30 36.6 13 6.9 262 5.3 4310

5 25 100 30 12.6 12 6.9 246 1.1 5880

6 25 100 30 3.8 11 3.6 104 0.2 3277

7 100 40 10 33.5 43 2.5 1064 1.0 7304

8 100 40 10 57.2 62 18.3 9154 14.6 33117

9 100 40 10 2.0 52 0.5 8223 0.0 27992

10 100 40 30 76.4 1068 24.0 15202 - -

11 100 40 30 40.7 1498 19.7 18676 - -

12 100 40 30 10.4 3029 9.9 17804 - -

Number of

Commodities

The normal The strong The extendedNames of

Problems

Number of

Nodes

Number of

Arcs
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Conclusions

We consider the capacitated network design
problem with piecewise linear costs. 

For the basic, strong and extend models, capacity scaling 
procedures are proposed.

The effectiveness of formulations and solution procedures are 
showed by numerical experiments.

Future tasks are 

To develop a path flow formulation instead of an arc flow 
formulation, and develop path generation method

To develop the intermediate model between the basic and 
strong model, and the strong and extended model
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