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Abstract 
Logistics network design is an important issue, which appears in supply chain management and distribution 
network design. The solution of the problem provides the network design and routes of freight. This problem is 
known as an NP-hard problem. Recently, several hybrid methods for a capacitated problem have been 
developed, such as combining exact and heuristics approaches and a MIP-tabu search hybrid. This paper 
presents hybrid heuristics combining capacity scaling and local branching heuristics. A capacity scaling 
method is based on changing capacities depending on these residual capacities at the LP problem, and a 
local branching approach utilizes a general MIP solver to explore limited neighborhoods. The combining 
method is able to find the best or equivalent solutions for 97% of the benchmark problems, and new best 
solutions for 70% of the problems. 
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1 INTRODUCTION 

The logistics network design problem represents a generic 
network model for applications in designing the 
construction and improvement of logistics, transportation, 
distribution and production in supply chain networks. For 
logistics network design problems, a wide range of 
application models can be found in Magnanti and Wong 
[1]. The logistics network design problem with limited 
capacities is called the capacitated network design 
problem (CND). The solution of CND provides the 
appropriate network design and routes of multicommodity 
flows, to minimize the total cost that is the sum of flow 
costs and design costs over the network with limited arc 
capacities. CND is formulated as a mixed integer 
programming problem. Binary variables are used to model 
the network design, selecting arcs from a candidate arc 
set appropriately, while continuous variables represent the 
volumes of path flows on the network. CND is known as an 
NP-hard problem.  

Many approaches have been developed, such as valid 
inequalities, relaxation methods and heuristics. Holmberg 
and Yuan [2] proposed a combination algorithm of a 
Lagrangian relaxation method and a branch-and-bound 
algorithm. Chouman et al. [3] proposed cover inequalities, 
minimum cardinality inequalities and these lifting 
inequalities, as well as cut-set inequalities. Costa et al. [4] 
proposed Benders’ decomposition, metric and cutset 
inequalities. 

Many tabu search meta-heuristics designed to find 
feasible solutions within a reasonable computation time 
have been developed. Crainic et al. [5] proposed simplex-
based tabu search methods. Ghamlouche et al. [6] [7] 
proposed a cycle-based tabu search method. Ghamlouche 
et al. [8] and Alvarez et al. [9] proposed path relinking 
algorithms or scatter search algorithms. Crainic and 
Gendron [10] and Crainic et al. [11] proposed cooperative 
parallel tabu searches.  

The scaling heuristics is based on changing flow costs or 
capacities, which depend on arc flow volumes, residual 
capacities or dual variable information, and solving linear 
relaxation problems iteratively. Crainic et al. [12] proposed 
slope scaling heuristics for design costs, and Katayama et 
al. [13] proposed capacity scaling heuristics for arc 
capacities. 

Recently, combining or hybrid methods with meta-
heuristics and MIP solvers have been developed. 
Rodríguez-Martín and Salazar-Gonzáleza [14] proposed a 
local branching heuristics, which utilizes a general MIP 

solver to explore neighborhoods. Hewitt at al. [15] 
proposed combining exact and heuristics approaches to 
search very large neighborhoods by solving restricted 
problems. Chouman and Crainic [16] proposed a MIP-tabu 
search hybrid framework, combining an exact MIP method 
and tabu search method. 

This paper presents a combining method with a capacity 
scaling heuristics and a local branch heuristics. The 
capacity scaling heuristics is an approximate iterative 
solution method, based on changing capacities. The 
proposed capacity scaling heuristics uses a path-based 
formulation, including tight forcing constrains and column-
row generation technique for CND. Since the formulation 
with forcing constraints is a large mixed integer 
programming problem (MIP), and it takes significant 
amounts of time to solve MIP or its linear relaxation 
problems, a weak formulation without tight forcing 
constraints is used in many papers to the present. A 
column generation and row generation technique is able to 
reduce a problem size. Consequently, even if a path-
based formulation includes tight forcing constraints, its 
linear relaxation problem can be solved within an 
appropriate computation time using a column-row 
generation technique. Then the capacity scaling heuristics 
is applied to the formulation and the feasible solutions can 
be obtained.  

These feasible solutions may not be good solutions 
necessarily. Then local branch heuristics is applied to the 
feasible solutions, and the better solutions can be found.  
The local branch heuristics solve MIP with restricted 
neighborhoods derived from the feasible solutions. The 
MIP restricted neighborhoods can be solved by a MIP 
solver. 

 

2 MATHEMATICAL FORMULATION 

CND can be described as follows. ),( ANG  denotes a 
directed network with the set of nodes N  and the set of 
directed arcs A . Let K  be the set of commodities on the 
network. For each commodity Kk  , let kP  be the set of 
paths of commodity k , and kd  the required amount of 
flow of commodity k  from its single origin node to its single 
destination node.  

The following measures characterize arc Aji ),( : i jf  the 
design cost of including arc ),( ji  in the network design, k

ijc  
the unit variable flow cost for commodity k  flowing on 
arc ),( ji , and i jC  the limited arc capacity which must be 
shared by all the commodities flowing on the arc. 



The formulation of CND has two type variables. The first 
type is a binary design variable, which is defined as 1ijy , 
if arc ),( ji  is included in the network design, 0ijy  
otherwise. The second type is a continuous flow variable, 
which is defined by k

px  representing the amount of the 
path flow of commodity k  flowing on the path kPp . Let 

p
ij  be the constant, 1p

ij  if arc ),( ji  is included in 
path p , 0p

ij  otherwise. 

The path flow based formulation CNDP for CND can be 
formulated as follows: 

(CNDP) 
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  Ajiyij  ),(1,0     (6) 

The objective function (1) is the total cost, the sum of 
variable flow costs of commodities plus the sum of design 
costs in a given network design, and should be minimized. 
Constraints (2) are the flow conservation equations, 
representing the fact that the sum of path flows of 
commodity k  is equal to the required amount. Constraints 
(3) provide the capacity constraints, which prohibit flowing 
if the arc is excluded, 0ijy , and allowing for flow up to 
the arc capacity if the arc is included, 1ijy . Constraints 
(4) are the forcing constraints, which prohibit flowing of 
commodity k  if the arc is excluded, and allow for flow up to 
the required amount if the arc is included. Constraints (5) 
ensure the non-negativity of continuous variables, and 
constraints (6) force binary variables to assume binary 
values. 

Let k
ijx  be the arc flow variable for commodity k  flowing 

on arc ),( ji . Let 
nN  be the set of outward nodes from 

node n , and 
nN  be the set of inward nodes. The arc flow 

based formulation CNDA of CND can be formulated as 
follows 

(CNDA) 

     Aji ijijAji Kk
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Constraints (8) are the flow conservation equations 
representing relations between the sum of arc flows into 
node n and the sum of arc flows out from node n for 

commodity k . 

 

3 CAPACITY SCALING HEURISTICS 

Capacity scaling heuristics is an approximate iterative 
solution method for capacitated network problems based 
on changing arc capacities, which depend on current flow 

volumes, residual capacities or design variables [13]. 
When solving the linear relaxation problem of CNDP, most 
design variables have decimal fraction at a relaxation 
solution. As a consequence, a feasible solution derived 
from the relaxation solution may not be good 
approximation for CNDP. 

Given the optimal arc flow X̂ , let ŷ  be the minimum 
continuous values which satisfy constrains (9) and (10). 
When the capacity C  is changed to yC ˆ  at CNDP, the 
optimal objective value of CNDP with capacity yCC ˆˆ  does 
not change. Then the linear relaxation problem with 
capacity Ĉ  is solved. As a result, a 0 or 1 solution for 
each design variable can be obtained. The 
multicommodity flow problem of all fixed design variables 
to these binary solutions is solved, and then the optimal 
flow variables of CNDP can be obtained. Figure 1 shows 
the relations among the capacities and the flow. 

As a matter of course, finding the optimal flow of CNDP is 
extremely difficult. If a near optimal flow can be found, Ĉ  
can be estimated and a good approximate solution might 
be derived from it. On the other hand, by changing 
capacity C  a little bit at a time, a near optimal flow should 
be sought. 

Capacity scaling heuristics begins by solving the linear 
relaxation problem of CNDP with lC  instead of C at 
iteration l . Initially, CC :1 . The linear relaxation problem 
LR( lC ) with capacity lC  at the iteration l can be 
formulated as follows: 

LR( lC ) 
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The right hand side of constraints (15) is changed to ij
l
ijyC , 

and the right hand side of constraints (18) is changed 
to ij

l
ij CC /  to enable flow up to its original capacity i jC . 

LR( lC ) can be solved by a MIP solver. 

Let y~  be the optimal design variable of LR( lC ). At the 
next iteration, lC  is substituted by   ll ~ CyC   1 , where 
 10   is a smoothing parameter preventing rapid 

jumping. If all design variables converge to zero or one in 
the solution of LR( lC ) at some iteration, then the 
multicommodity network flow problem of all fixed design 
variables y~ is solved and a feasible flow of CNDP is found.  
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Figure 1: Capacity Scaling 
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For obtaining converged solutions, it may require 
numerous iterations, or sometimes they may not be 
convergent. Consequently, when most design variables 
converge to zero or one, and the number of free design 
variables is less than a certain number B , then a branch 
and bound algorithm is applied for free variables, and an 
upper bound and a feasible solution of CNDP are found. 
The capacity scaling heuristics stops when the iteration 
number exceeds the minimum iteration number MINN  
and the upper bound UB is found. 

 An outline of the capacity scaling heuristics proceeds as 
follows:  

Capacity Scaling Heuristics 

1) Set  1,0 ,  5.0,0 , MINN  and B .  

AjiCC ijij  ),(,1 , :UB , 1:l . 

2) Solve LR( lC ). Let y~  be the corresponding design 
solution. 

3) For each Aji ),( , 
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When the number of free variables of y  is less than B , 

a) Solve the restricted problem with design variable 
y such that UBZ  , by a branch and bound algorithm, 
where Z is the optimal value of the restricted problem 

b) If Z  can be found, then Z:UBl  . 

4) If MINNl   and UB , then stop the procedure.  

5) 1 l:l and   11 1   l
ijij

l
ij

l
ij CyC:C  , Aji ),( . 

B is reduced. Go to step 2. 

 

4 COLUMN AND ROW GENERATION TECHNIQUE 

In capacity scaling heuristics, the linear programming 
problem LR( lC ) must be solved iteratively. Since LR( lC ) 
has an exponentially large number of path flow variables 
and has the forcing constraints of the number of  AKO , 
not every variable and constraint can be included in the 
model when solving large instances. In order to solve 
larger instances efficiently, a column generation technique 
for path flow variables is used. The row generation can 
also reduce the number of forcing constraints, which are 
only generated, as needed, via a column generation. 

For each commodity k , let kk PP   be the initial set of 
paths and p

ij  the constant, 1p
ij  if path flow variable 

kk
p Ppx ,  exists in the formulation and ),( ji  is included 

in path p , 0p
ij  otherwise. Consequently, the only forcing 

constraint in the formulation is 0  kPp
p
ij . 

The restricted problem RLR( P,lC ) with capacity lC , 
which is restricted path sets KkPP kk  ,  and restricted 
forcing constraints for LR( lC ), is reformulated as follows: 
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Let s  be the dual variable for constraint (21),  0u   for 
constraint (22),  0w   for constraint (24). When solving 
RLR( P,lC ) optimally, a dual solution  wus ,,  is obtained. 
The reduced cost of path flow variable k

px  is  

.)(),(  Aji
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The pricing problem is used for generating new path flow 
variables. The pricing problem of RLR( P,lC )  is disjoint 
for each commodity k , and then can be solved separately. 
The pricing problem for commodity k  is written as follows: 
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Given u and w , this is a shortest path problem with 
nonnegative arc length k

ijij
k
ij wuc  , and can be solved 

efficiently using Dijkstra’s algorithm. Let p̂  be the optimal 
path of this problem. If kk sz  , then the path flow 
variable k

p
x ˆ

 corresponding to the optimal path p̂ has 
negative reduced cost. Then path p̂  is added to kP , the 
new variable k

px ˆ  is generated as a new column, 
and pjip

ij
ˆ),(,1:

ˆ
 . When adding the new path p̂ , if 

pjikPp
p
ij

ˆ),(,0    and the forcing constraints do not 
exist, then they are also generated and added to 
RLR( P,lC ) as new rows. 

To summarize, the algorithm with the column-row 
generation technique solving LR( lC ) is as follows:  

Column-Row Generation Technique 

1) For each Kk  , set kP  and kp
ij PpAji  ,),(,1 . 

2) Solve RLR( P,lC ). Let  wus ,,  be a corresponding 
dual solution. 

3) For each Kk  , 

a) Solve the shortest path problem with the arc 
length Ajiwuc k

ijij
k
ij  ),(, . Let kz  be the length of 

shortest path p̂ . 

b) If kk sz  , then path p̂  is added to kP , generate path 
variable k

p
x ˆ  and pjip

ij
ˆ),(,1  . 

c) For each Aji ),( , if 0  kPp
p
ij becomes greater 

than 0 from 0 in step b, then corresponding forcing 
constraints are generated and added to RLR( P,lC ). 

4) If a new path is generated, then go to step 2, otherwise 
stop the procedure. 

 

5 LOCAL BRANCHING HEURISTICS 

The feasible solution found by the capacity scaling 
heuristics is not necessarily a good solution. Then local 
branch heuristics [13] is applied to the feasible solutions, 
and better solutions may be found.  

Given the feasible design solution y  from the capacity 
scaling heuristics and a parameter )0(m , the additional 
local branching constraint is as follows: 

myy
ijij yAji ijyAji ij    0|),(1|),(

)1(    (30) 

1)1(
0|),(1|),(

   ijij yAji ijyAji ij yy    (31) 

The first branching constraint includes the domain of 
OPTm   neighborhood of y . The second branching 

constraint excludes the current solution.  

This method starts with a feasible design solution y of 
CNDA. The reason for using CNDA instead of CNDP is 
that the solutions of CNDP with restricted path variables 
and forcing constraints derived from the column-row 
generation may not include the optimal solution. The 
branching constraint (30) associated with y is added to 



CNDA, and the added problem is solved by a MIP solver. 
If a better solution y  is found within a time limitT , then it 
becomes the new incumbent as yy : . At this incumbent, 
the problem that the following constraint is replaced by 
(30) is solved iteratively. 

1)1(
0|),(1|),(

  
myy

ijij yAji ijyAji ij   (32) 

If the better solution cannot be found, the size of 
neighborhood m  is reduced. 

  

6 COMPUTATIONAL EXPERIMENTS 

To evaluate the performance of the combining capacity 
scaling and local branching heuristics, the optimal value or 
a lower bound using a branch and bound algorithm is also 
compared to the result of the path relinking [8], the local 

Table 1: Average Gaps for C Instances (%) 

RL LBR IP MIP CAP 5-300 5-900 10-300 10-900 15-300 15-900 BEST 

5.01 3.55 2.13 1.31 1.65 1.12 1.06 0.92 0.88 0.98 0.84 0.79 

 
Table 2: Detail Results for C Instances 

N/A/K/Type OPT/LB RL LBR IP MIP CAP CALB GAP(%) 

100/400/010/F/L 23949  O 24022  24690  23949  24161  24459  23949  * 0.00 

100/400/010/F/T 62245  L 65278  67357  65885  67233  72169  64607  ** 3.79 

100/400/010/V/L 28423  O 28485  28423  28423  28423  28423  28423  * 0.00 

100/400/030/F/L 49018  O 51325  49872  49694  49682  51956  49018  ** 0.00 

100/400/030/F/T 130852  L 141359  141633  141365  144349  144314  136446  ** 4.28 

100/400/030/V/T 384802  O 384926  384809  384836  384940  384880  384802  ** 0.00 

20/230/040/V/L 423848  O 424385  423848  424385  423848  423848  423848  * 0.00 

20/230/040/V/T 371475  O 371811  371475  371779  371475  371906  371475  * 0.00 

20/230/040/F/T 643036  O 645548  643036  643187  643538  643666  643036  * 0.00 

20/230/200/V/L 94213  O 100404  95295  95097  94218  94213  94213  ** 0.00 

20/230/200/F/L 136975  L 147988  143446  141253  138491  137851  137642  ** 0.49 

20/230/200/V/T 97914  O 104689  98039  99410  98612  97968  97914  ** 0.00 

20/230/200/F/T 134811  L 147554  141128  140273  136309  136302  136031  ** 0.90 

20/300/040/V/L 429398  O 429398  429398  429398  429398  429398  429398  * 0.00 

20/300/040/F/L 586077  O 590427  586077  586077  588464  587800  586077  * 0.00 

20/300/040/V/T 464509  O 464509  464509  464509  464509  464569  464509  * 0.00 

20/300/040/F/T 604198  O 609990  604198  604198  604198  604198  604198  * 0.00 

20/300/200/V/L 74375  L 78184  76375  75319  75045  74913  74830  ** 0.61 

20/300/200/F/L 113144  L 123484  119143  117543  116259  115876  115751  ** 2.30 

20/300/200/V/T 74991  O 78867  76168  76198  74995  74991  74991  ** 0.00 

20/300/200/F/T 105846  L 113584  109808  110344  109164  107467  107467  ** 1.53 

30/520/100/V/L 53958  O 54904  54026  54113  54008  54012  53958  ** 0.00 

30/520/100/F/L 92653  L 102054  96255  94388  93967  94743  94043   1.50 

30/520/100/V/T 52046  O 53017  52129  52174  52156  52270  52046  ** 0.00 

30/520/100/F/T 95852  L 106130  101102  98883  97490  98867  97377  ** 1.59 

30/520/400/V/L 112422  L 119416  114367  114042  112927  112846  112786  ** 0.32 

30/520/400/F/L 147183  L 163112  157726  154218  149920  149446  149446  ** 1.54 

30/520/400/V/T 114556  L 120170  115240  114922  114664  114641  114641  ** 0.07 

30/520/400/F/T 150215  L 163675  168561  154606  152929  152745  152745  ** 1.68 

30/700/100/V/L 47603  O 48723  47603  47612  47603  47614  47603  * 0.00 

30/700/100/F/L 59321  L 63091  60272  60700  60184  60192  59995  ** 1.14 

30/700/100/V/T 45822  L 47209  45905  46046  45880  46169  45875  ** 0.12 

30/700/100/F/T 54597  L 56576  55104  55609  54926  55339  54904  ** 0.56 

30/700/400/V/L 97001  L 105116  103787  98718  97982  97960  97960  ** 0.99 

30/700/400/F/L 131233  L 145026  169760  152576  135109  135100  135100  ** 2.95 

30/700/400/V/T 94333  L 101212  96680  96168  95781  95306  95306  ** 1.03 

30/700/400/F/T 128027  L 141013  144926  131629  130856  130146  130146  ** 1.66 

O :Optimal Value, L :Lower Bound, Italic type:Best Upper Bound, ** : New Best, * : Equivalent Best  
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branching [14], IP search [15], MIP tabu search [16], 
simplex-based tabu search [5], cooperative parallel tabu 
search [10] and cycle-based tabu search [7]. The same 
two data sets by Crainic et al. [6] are used. The detailed 
description of these problem instances is given in [6].  

The first set of instances, denoted C, consists of 37 
instances characterized by the number of nodes, the 
number of arcs and the number of commodities. Original C 
instances consist of 43 problems. But because 6 problems 
are trivial, their problems are excluded. Two letters are 
used to characterize the design cost level, "F" for high and 
"V" for low relative to the flow cost, and the capacity level 
"T" for tight and "L" for loose compared to the total 
demand.  

The second set of instances, denoted R, consists of 153 
problem instances characterized by three design cost 
levels, "F01", "F05", "F10", and three capacity levels, "C1", 
"C2", "C8". If the F value is small, the design costs are 
low, and if the F value is large, the design costs are high 
compared to the flow costs. If the C value is small, the arc 
capacities are loose, and if large, the arc capacities are 
tight compared to the total demand.  

The experiments were performed on PCs with Pentium i7 
CPU 2.93GHz with 4 cores, 16GBytes RAM. The computer 
code is written in C++ compiled for Ubuntu 10.0. CPLEX 
12.2, a MIP solver by ILOG, is used to solve linear 
programming problems and mixed integer programming 
problems. In order to assess the solution quality relative to 
the optimal values or lower bounds, all instances using the 
branch and bound algorithm of CPLEX are solved, and a 
limit of 10 hours of computation time was imposed for 
each instance. If the problem cannot be solved optimally 
within the limit computation time, the lower bound found in 
the branch and bound algorithm is used instead of the 
optimal value. 

A smoothing parameter   was calibrated, and ten values 
from 0.025 to 0.250 were tested. An execution parameter 
of a branch and bound algorithm, B =75 for each instance 
initially. A branching parameter m set to 5, 10 and 15, and 
the time limit T  of a branch and bound algorithm set to 
300 and 900 seconds. 

Table 1 displays the average gaps of results for C 
instances. The average gaps are relative to the optimal 

value/lower bound by CPLEX for the upper bound by each 
heuristics. RL is the result by the path relinking, LBR by 
local branching, IP by IP search, and MIP by MIP Tabu 
search. CAP is the best result found among all parameters 
by the capacity scaling heuristics, and BEST by the 
combining method with the capacity scaling and local 
branching heuristics. Columns from 5-300 to 15-900 are 
the results of the combining method. The first letter 
indicates the branching parameter m , and the second 
letter indicates the time limit T . Tables 2 display the 
detailed results for C instances. Column N/A/K/Type 
indicates the number of nodes, arcs, commodities, and the 
design cost level and capacity level. Column OPT/LB 
corresponds to the optimal value/lower bound by CPLEX. 
"O" indicates that the optimal value is found, and "L" 
indicates that the MIP solver stopped due to the time limit 
condition and this value is a lower bound. Column CALB is 
the best result by the combining method with the capacity 
scaling and local branching heuristics. "*" indicates that 
the combining method finds the same upper bound as the 
current best upper bound, and "**" indicates that it finds 
the new best upper bound.  

In Table 1, when compared to MIP tabu search, which is 
the best result among four other heuristics, the combining 
method improves average gaps by 0.52%. In Tables 2, the 
best solutions for 36 out of 37 problems and the new best 
solutions for 26 problems in C instances can be obtained 
by the combining method. The best solution for only one 
problem cannot be found.  

Table 3 displays the computation times in CPU seconds 
for the capacity scaling heuristics, the combining method 
and four other heuristics. These computational times are 
reported in their papers. Due to the fact that different 
CPUs are used, these computation times cannot be 
compared directly. But compared to other heuristics, the 
computational times by the capacity scaling heuristics are 
very short, such as 76.3 seconds. The combining method 
can be solved within a reasonable computation time, from 
503.5 to 1550.5 seconds. 

Table 4 displays the average gaps of results for R 
instances. SIMP is the result by simplex-based tabu 
search, PARA by cooperative parallel tabu search, and 
CYCL by cycle-based tabu search. Path relinking 

Table 3: Average CPU Times for C Instances (seconds) 

RL 

 

LBR IP MIP CAP 5-300 5-900 10-300 10-900 15-300 15-900 

9432.3  

 

574.6  408.1  6958.6  76.3 503.5  1550.4  644.4  1495.0  514.7  1390.5  

 

Table 4: Average Gaps for C Instances (%) 

SIMP PARA CYCL CAP CALB 

9.52 6.03 3.64 0.65 0.19 

 

Table 5: Gap Distribution According to Fixed Cost 
and Capacity Level, R Instances (%) 

 RL CALB 

 
C1 C2 C8 C1 C2 C8 

F01 0.76 0.78 1.15 0.00 -0.01 -0.12 

F02 2.43 2.64 3.23 -0.14 -0.17 -0.43 

F10 3.09 3.04 4.11 -0.58 -0.61 -0.62 

 

Table 7: Average CPU Times for R instances (seconds) 

SIMP PARA CYCL CAP 5-300 5-900 10-300 10-900 15-300 15-900 

 785.4 989.7 1575.2  45.7 539.5 288.8 532.6 211.0 493.6 1390.5 

 

Table 6: Gap Distribution According to Problem Dimensions, R 
Instances (%) 

N/A/K RL CALB N/A/K RL 

 

CALB 

10/25/10 0.00 0.00 20/100/40 1.37 0.00 

10/25/25 0.23 0.00 20/100/100 2.05 -0.04 

10/25/50 0.61 0.00 20/100/200 4.55 -0.12 

10/50/10 0.08 0.00 20/200/40 3.59 -0.06 

10/50/25 0.36 0.00 20/200/100 4.93 -0.66 

10/50/50 1.14 0.00 20/200/100 5.41 -0.75 

10/75/10 0.04 0.00 20/300/40 2.08 -0.33 

10/75/25 0.41 0.00 20/300/100 4.68 -0.79 

10/75/50 1.52 0.00 20/300/200 6.84 -2.24 

 



heuristics and MIP tabu search heuristics solved R 
instances, but these average gaps are not listed because 
of no detailed results in their papers. In Table 4, when 
compared to CYCL, the combining method improves 
average gaps for 3.45%. Table 5 and 6 display the 
distribution of the average gaps relative to the optimal 
value/upper bound by CPLEX reported in [6]. The reason 
for using the gaps based on upper bounds instead of lower 
bounds is to compare the results of the combining method 
against one of the path relinking heuristics. Table 5 
displays the average gaps for the upper bound by RL and 
CALB, according to the design cost level and the capacity 
level of R instances. Table 6 displays the same 
information, but according to problem dimensions. In table 
5, the gap ranges of path relinking heuristics varies from 
0.76% to 4.11%, but the range of the combining method 
varies from -0.62% to 0.00%. The negative value means 
that the upper bound is better than one by CPLEX. In 
Table 6, the gap ranges of path relinking varies from 
0.00% to 6.84%, but the range of the combining method 
varies from -2.24% to 0.00%. All average gaps in left 
column by CALB are 0.00%, and that indicates that the 
optimal value is found by the combining method and 
CPLEX. 

Table 7 displays the computation times in CPU seconds 
for the capacity scaling heuristics, the combining method 
and three other heuristics, these computational times of 
which are reported in their papers. Compared to other 
heuristics, the computational times by the capacity scaling 
heuristics are very short, such as 45.7 seconds. The 
combining method can be solved within a reasonable 
computation time, from 211.0 to 1390.5 seconds. 

The combining method with the capacity scaling heuristics 
and the local branch heuristics proposed in this paper 
performs satisfactorily for CND. By these computational 
results, the combining method can offer high quality 
solutions with a reasonable computation time, and improve 
most current best solutions. See detailed results at 
http://www.rku.ac.jp/~katayama/ sub02english.htm.  

 

7 CONCLUSION 

In this paper, the combining method with the capacity 
scaling heuristics using the column-row generation 
technique for the strong formulation of CND and local 
branching heuristics are proposed. The performance of the 
combining method was evaluated by solving C and R 
instances, and computational results are satisfactory. The 
combining method can find the best or equivalent 
solutions for 97% of C instances, and new best solutions 
for 70% of problems.   

The proposed combining method can offer high quality 
results. For the column-row generation technique, the 
computational effort can be reduced considerably. The 
combining method proposed in this paper offers one of the 
best current results among approximate solution 
algorithms to resolve CND.  
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