
21
st
 International Conference on Production Research

Combining Capacity Scaling and Local Branch Approaches for the Logistics Network
Design Problem

N. Katayama, S. Yurimoto

Distribution and Logistics Systems, Ryutsu Keizai University, 120 Hirahata, Ryugasaki, Ibaraki, Japan

Abstract
Logistics network design is an important issue, which appears in supply chain management and distribution
network design. The solution of the problem provides the network design and routes of freight. This problem is
known as an NP-hard problem. Recently, several hybrid methods for a capacitated problem have been
developed, such as combining exact and heuristics approaches and a MIP-tabu search hybrid. This paper
presents hybrid heuristics combining capacity scaling and local branching heuristics. A capacity scaling
method is based on changing capacities depending on these residual capacities at the LP problem, and a
local branching approach utilizes a general MIP solver to explore limited neighborhoods. The combining
method is able to find the best or equivalent solutions for 97% of the benchmark problems, and new best
solutions for 70% of the problems.

Keywords: Network Design, Logistics, Optimization

1 INTRODUCTION

The logistics network design problem represents a generic
network model for applications in designing the
construction and improvement of logistics, transportation,
distribution and production in supply chain networks. For
logistics network design problems, a wide range of
application models can be found in Magnanti and Wong
[1]. The logistics network design problem with limited
capacities is called the capacitated network design
problem (CND). The solution of CND provides the
appropriate network design and routes of multicommodity
flows, to minimize the total cost that is the sum of flow
costs and design costs over the network with limited arc
capacities. CND is formulated as a mixed integer
programming problem. Binary variables are used to model
the network design, selecting arcs from a candidate arc
set appropriately, while continuous variables represent the
volumes of path flows on the network. CND is known as an
NP-hard problem.

Many approaches have been developed, such as valid
inequalities, relaxation methods and heuristics. Holmberg
and Yuan [2] proposed a combination algorithm of a
Lagrangian relaxation method and a branch-and-bound
algorithm. Chouman et al. [3] proposed cover inequalities,
minimum cardinality inequalities and these lifting
inequalities, as well as cut-set inequalities. Costa et al. [4]
proposed Benders’ decomposition, metric and cutset
inequalities.

Many tabu search meta-heuristics designed to find
feasible solutions within a reasonable computation time
have been developed. Crainic et al. [5] proposed simplex-
based tabu search methods. Ghamlouche et al. [6] [7]
proposed a cycle-based tabu search method. Ghamlouche
et al. [8] and Alvarez et al. [9] proposed path relinking
algorithms or scatter search algorithms. Crainic and
Gendron [10] and Crainic et al. [11] proposed cooperative
parallel tabu searches.

The scaling heuristics is based on changing flow costs or
capacities, which depend on arc flow volumes, residual
capacities or dual variable information, and solving linear
relaxation problems iteratively. Crainic et al. [12] proposed
slope scaling heuristics for design costs, and Katayama et
al. [13] proposed capacity scaling heuristics for arc
capacities.

Recently, combining or hybrid methods with meta-
heuristics and MIP solvers have been developed.
Rodríguez-Martín and Salazar-Gonzáleza [14] proposed a
local branching heuristics, which utilizes a general MIP

solver to explore neighborhoods. Hewitt at al. [15]
proposed combining exact and heuristics approaches to
search very large neighborhoods by solving restricted
problems. Chouman and Crainic [16] proposed a MIP-tabu
search hybrid framework, combining an exact MIP method
and tabu search method.

This paper presents a combining method with a capacity
scaling heuristics and a local branch heuristics. The
capacity scaling heuristics is an approximate iterative
solution method, based on changing capacities. The
proposed capacity scaling heuristics uses a path-based
formulation, including tight forcing constrains and column-
row generation technique for CND. Since the formulation
with forcing constraints is a large mixed integer
programming problem (MIP), and it takes significant
amounts of time to solve MIP or its linear relaxation
problems, a weak formulation without tight forcing
constraints is used in many papers to the present. A
column generation and row generation technique is able to
reduce a problem size. Consequently, even if a path-
based formulation includes tight forcing constraints, its
linear relaxation problem can be solved within an
appropriate computation time using a column-row
generation technique. Then the capacity scaling heuristics
is applied to the formulation and the feasible solutions can
be obtained.

These feasible solutions may not be good solutions
necessarily. Then local branch heuristics is applied to the
feasible solutions, and the better solutions can be found.
The local branch heuristics solve MIP with restricted
neighborhoods derived from the feasible solutions. The
MIP restricted neighborhoods can be solved by a MIP
solver.

2 MATHEMATICAL FORMULATION

CND can be described as follows.),(ANG  denotes a
directed network with the set of nodes N and the set of
directed arcs A . Let K be the set of commodities on the
network. For each commodity Kk  , let kP be the set of
paths of commodity k , and kd the required amount of
flow of commodity k from its single origin node to its single
destination node.

The following measures characterize arc Aji ),(: i jf the
design cost of including arc),(ji in the network design, k

ijc
the unit variable flow cost for commodity k flowing on
arc),(ji , and i jC the limited arc capacity which must be
shared by all the commodities flowing on the arc.

The formulation of CND has two type variables. The first
type is a binary design variable, which is defined as 1ijy ,
if arc),(ji is included in the network design, 0ijy
otherwise. The second type is a continuous flow variable,
which is defined by k

px representing the amount of the
path flow of commodity k flowing on the path kPp . Let

p
ij be the constant, 1p

ij if arc),(ji is included in
path p , 0p

ij otherwise.

The path flow based formulation CNDP for CND can be
formulated as follows:

(CNDP)

       Aji ijijAji Kk Pp
k
p

p
ij

k
ij yfxcminimize k),(),( (1)

Kkdxtosubject k
Pp

k
pk   (2)

AjiyCx ijijKk Pp
k
p

p
ijk   ),( (3)

KkAjiydx ij
k

Pp
k
p

p
ijk   ,),( (4)

KkPpx kk
p  ,0 (5)

  Ajiyij ),(1,0 (6)

The objective function (1) is the total cost, the sum of
variable flow costs of commodities plus the sum of design
costs in a given network design, and should be minimized.
Constraints (2) are the flow conservation equations,
representing the fact that the sum of path flows of
commodity k is equal to the required amount. Constraints
(3) provide the capacity constraints, which prohibit flowing
if the arc is excluded, 0ijy , and allowing for flow up to
the arc capacity if the arc is included, 1ijy . Constraints
(4) are the forcing constraints, which prohibit flowing of
commodity k if the arc is excluded, and allow for flow up to
the required amount if the arc is included. Constraints (5)
ensure the non-negativity of continuous variables, and
constraints (6) force binary variables to assume binary
values.

Let k
ijx be the arc flow variable for commodity k flowing

on arc),(ji . Let 
nN be the set of outward nodes from

node n , and 
nN be the set of inward nodes. The arc flow

based formulation CNDA of CND can be formulated as
follows

(CNDA)

     Aji ijijAji Kk
k
ij

k
ij yfxcminimize),(),((7)

KkNn

otherwise

Dnifd

Onifd

xx

tosubject

kk

kk

Nj
k
njNi

k
in

nn















   ,

0

 (8)

AjiyCx ijijKk

k

ij  ),((9)

KkAjiydx ij

kk

ij  ,),((10)

KkPpx kk
ij  ,0 (11)

  Ajiyij ),(1,0 (12)

Constraints (8) are the flow conservation equations
representing relations between the sum of arc flows into
node n and the sum of arc flows out from node n for

commodity k .

3 CAPACITY SCALING HEURISTICS

Capacity scaling heuristics is an approximate iterative
solution method for capacitated network problems based
on changing arc capacities, which depend on current flow

volumes, residual capacities or design variables [13].
When solving the linear relaxation problem of CNDP, most
design variables have decimal fraction at a relaxation
solution. As a consequence, a feasible solution derived
from the relaxation solution may not be good
approximation for CNDP.

Given the optimal arc flow X̂ , let ŷ be the minimum
continuous values which satisfy constrains (9) and (10).
When the capacity C is changed to yC ˆ at CNDP, the
optimal objective value of CNDP with capacity yCC ˆˆ  does
not change. Then the linear relaxation problem with
capacity Ĉ is solved. As a result, a 0 or 1 solution for
each design variable can be obtained. The
multicommodity flow problem of all fixed design variables
to these binary solutions is solved, and then the optimal
flow variables of CNDP can be obtained. Figure 1 shows
the relations among the capacities and the flow.

As a matter of course, finding the optimal flow of CNDP is
extremely difficult. If a near optimal flow can be found, Ĉ
can be estimated and a good approximate solution might
be derived from it. On the other hand, by changing
capacity C a little bit at a time, a near optimal flow should
be sought.

Capacity scaling heuristics begins by solving the linear
relaxation problem of CNDP with lC instead of C at
iteration l . Initially, CC :1 . The linear relaxation problem
LR(lC) with capacity lC at the iteration l can be
formulated as follows:

LR(lC)

       Aji ijijAji Kk Pp
k
p

p
ij

k
ij yfxcminimize k),(),( (13)

Kkdxtosubject k
Pp

k
pk   (14)

AjiyCx ij
l
ijKk Pp

k
p

p
ijk   ),( (15)

KkAjiydx ij
k

Pp
k
p

p
ijk   ,),( (16)

KkPpx kk
p  ,0 (17)

AjiCCy l
ijijij ),(/0 (18)

The right hand side of constraints (15) is changed to ij
l
ijyC ,

and the right hand side of constraints (18) is changed
to ij

l
ij CC / to enable flow up to its original capacity i jC .

LR(lC) can be solved by a MIP solver.

Let y~ be the optimal design variable of LR(lC). At the
next iteration, lC is substituted by   ll ~ CyC   1 , where
 10   is a smoothing parameter preventing rapid

jumping. If all design variables converge to zero or one in
the solution of LR(lC) at some iteration, then the
multicommodity network flow problem of all fixed design
variables y~ is solved and a feasible flow of CNDP is found.

ijX̂
ijij yCC ˆˆ  l

ijC
ijC

Figure 1: Capacity Scaling

ijy

1

0

21
st
 International Conference on Production Research

For obtaining converged solutions, it may require
numerous iterations, or sometimes they may not be
convergent. Consequently, when most design variables
converge to zero or one, and the number of free design
variables is less than a certain number B , then a branch
and bound algorithm is applied for free variables, and an
upper bound and a feasible solution of CNDP are found.
The capacity scaling heuristics stops when the iteration
number exceeds the minimum iteration number MINN
and the upper bound UB is found.

 An outline of the capacity scaling heuristics proceeds as
follows:

Capacity Scaling Heuristics

1) Set  1,0 ,  5.0,0 , MINN and B .

AjiCC ijij ),(,1 , :UB , 1:l .

2) Solve LR(lC). Let y~ be the corresponding design
solution.

3) For each Aji ),(,















.

1~1

~0

:

otherwisefree

yif

yif

y ij

ij

ij 



 (19)

When the number of free variables of y is less than B ,

a) Solve the restricted problem with design variable
y such that UBZ  , by a branch and bound algorithm,
where Z is the optimal value of the restricted problem

b) If Z can be found, then Z:UBl  .

4) If MINNl  and UB , then stop the procedure.

5) 1 l:l and   11 1   l
ijij

l
ij

l
ij CyC:C  , Aji ),(.

B is reduced. Go to step 2.

4 COLUMN AND ROW GENERATION TECHNIQUE

In capacity scaling heuristics, the linear programming
problem LR(lC) must be solved iteratively. Since LR(lC)
has an exponentially large number of path flow variables
and has the forcing constraints of the number of  AKO ,
not every variable and constraint can be included in the
model when solving large instances. In order to solve
larger instances efficiently, a column generation technique
for path flow variables is used. The row generation can
also reduce the number of forcing constraints, which are
only generated, as needed, via a column generation.

For each commodity k , let kk PP  be the initial set of
paths and p

ij the constant, 1p
ij if path flow variable

kk
p Ppx , exists in the formulation and),(ji is included

in path p , 0p
ij otherwise. Consequently, the only forcing

constraint in the formulation is 0  kPp
p
ij .

The restricted problem RLR(P,lC) with capacity lC ,
which is restricted path sets KkPP kk  , and restricted
forcing constraints for LR(lC), is reformulated as follows:

RLR(P,lC)

       Aji ijijAji Kk Pp
k
p

p
ij

k
ij yfxcminimize k),(),( (20)

Kkdxtosubject k
Pp

k
pk   (21)

AjiyCx ij
l
ijKk Pp

k
p

p
ijk   ),( (22)

0,,),( 
p
ijij

k
Pp

k
p

p
ij ifKkAjiydxk  (23)

KkPpx kk
p  ,0 (24)

AjiCCy l
ijijij ),(/0 (25)

Let s be the dual variable for constraint (21),  0u  for
constraint (22),  0w  for constraint (24). When solving
RLR(P,lC) optimally, a dual solution  wus ,, is obtained.
The reduced cost of path flow variable k

px is

.)(),(  Aji
kp

ij
k
ijij

k
ij swuc  (26)

The pricing problem is used for generating new path flow
variables. The pricing problem of RLR(P,lC) is disjoint
for each commodity k , and then can be solved separately.
The pricing problem for commodity k is written as follows:

   Aji
k
p

p
ij

k
ijij

k
ij

k xwucminimizez),()( (27)

k
Pp

k
p dxtosubject k   (28)

KkPpx kk
p  ,0 (29)

Given u and w , this is a shortest path problem with
nonnegative arc length k

ijij
k
ij wuc  , and can be solved

efficiently using Dijkstra’s algorithm. Let p̂ be the optimal
path of this problem. If kk sz  , then the path flow
variable k

p
x ˆ

 corresponding to the optimal path p̂ has
negative reduced cost. Then path p̂ is added to kP , the
new variable k

px ˆ is generated as a new column,
and pjip

ij
ˆ),(,1:

ˆ
 . When adding the new path p̂ , if

pjikPp
p
ij

ˆ),(,0   and the forcing constraints do not
exist, then they are also generated and added to
RLR(P,lC) as new rows.

To summarize, the algorithm with the column-row
generation technique solving LR(lC) is as follows:

Column-Row Generation Technique

1) For each Kk  , set kP and kp
ij PpAji  ,),(,1 .

2) Solve RLR(P,lC). Let  wus ,, be a corresponding
dual solution.

3) For each Kk  ,

a) Solve the shortest path problem with the arc
length Ajiwuc k

ijij
k
ij ),(, . Let kz be the length of

shortest path p̂ .

b) If kk sz  , then path p̂ is added to kP , generate path
variable k

p
x ˆ and pjip

ij
ˆ),(,1  .

c) For each Aji ),(, if 0  kPp
p
ij becomes greater

than 0 from 0 in step b, then corresponding forcing
constraints are generated and added to RLR(P,lC).

4) If a new path is generated, then go to step 2, otherwise
stop the procedure.

5 LOCAL BRANCHING HEURISTICS

The feasible solution found by the capacity scaling
heuristics is not necessarily a good solution. Then local
branch heuristics [13] is applied to the feasible solutions,
and better solutions may be found.

Given the feasible design solution y from the capacity
scaling heuristics and a parameter)0(m , the additional
local branching constraint is as follows:

myy
ijij yAji ijyAji ij    0|),(1|),(

)1((30)

1)1(
0|),(1|),(

   ijij yAji ijyAji ij yy (31)

The first branching constraint includes the domain of
OPTm  neighborhood of y . The second branching

constraint excludes the current solution.

This method starts with a feasible design solution y of
CNDA. The reason for using CNDA instead of CNDP is
that the solutions of CNDP with restricted path variables
and forcing constraints derived from the column-row
generation may not include the optimal solution. The
branching constraint (30) associated with y is added to

CNDA, and the added problem is solved by a MIP solver.
If a better solution y  is found within a time limitT , then it
becomes the new incumbent as yy : . At this incumbent,
the problem that the following constraint is replaced by
(30) is solved iteratively.

1)1(
0|),(1|),(

  
myy

ijij yAji ijyAji ij (32)

If the better solution cannot be found, the size of
neighborhood m is reduced.

6 COMPUTATIONAL EXPERIMENTS

To evaluate the performance of the combining capacity
scaling and local branching heuristics, the optimal value or
a lower bound using a branch and bound algorithm is also
compared to the result of the path relinking [8], the local

Table 1: Average Gaps for C Instances (%)

RL LBR IP MIP CAP 5-300 5-900 10-300 10-900 15-300 15-900 BEST

5.01 3.55 2.13 1.31 1.65 1.12 1.06 0.92 0.88 0.98 0.84 0.79

Table 2: Detail Results for C Instances

N/A/K/Type OPT/LB RL LBR IP MIP CAP CALB GAP(%)

100/400/010/F/L 23949 O 24022 24690 23949 24161 24459 23949 * 0.00

100/400/010/F/T 62245 L 65278 67357 65885 67233 72169 64607 ** 3.79

100/400/010/V/L 28423 O 28485 28423 28423 28423 28423 28423 * 0.00

100/400/030/F/L 49018 O 51325 49872 49694 49682 51956 49018 ** 0.00

100/400/030/F/T 130852 L 141359 141633 141365 144349 144314 136446 ** 4.28

100/400/030/V/T 384802 O 384926 384809 384836 384940 384880 384802 ** 0.00

20/230/040/V/L 423848 O 424385 423848 424385 423848 423848 423848 * 0.00

20/230/040/V/T 371475 O 371811 371475 371779 371475 371906 371475 * 0.00

20/230/040/F/T 643036 O 645548 643036 643187 643538 643666 643036 * 0.00

20/230/200/V/L 94213 O 100404 95295 95097 94218 94213 94213 ** 0.00

20/230/200/F/L 136975 L 147988 143446 141253 138491 137851 137642 ** 0.49

20/230/200/V/T 97914 O 104689 98039 99410 98612 97968 97914 ** 0.00

20/230/200/F/T 134811 L 147554 141128 140273 136309 136302 136031 ** 0.90

20/300/040/V/L 429398 O 429398 429398 429398 429398 429398 429398 * 0.00

20/300/040/F/L 586077 O 590427 586077 586077 588464 587800 586077 * 0.00

20/300/040/V/T 464509 O 464509 464509 464509 464509 464569 464509 * 0.00

20/300/040/F/T 604198 O 609990 604198 604198 604198 604198 604198 * 0.00

20/300/200/V/L 74375 L 78184 76375 75319 75045 74913 74830 ** 0.61

20/300/200/F/L 113144 L 123484 119143 117543 116259 115876 115751 ** 2.30

20/300/200/V/T 74991 O 78867 76168 76198 74995 74991 74991 ** 0.00

20/300/200/F/T 105846 L 113584 109808 110344 109164 107467 107467 ** 1.53

30/520/100/V/L 53958 O 54904 54026 54113 54008 54012 53958 ** 0.00

30/520/100/F/L 92653 L 102054 96255 94388 93967 94743 94043 1.50

30/520/100/V/T 52046 O 53017 52129 52174 52156 52270 52046 ** 0.00

30/520/100/F/T 95852 L 106130 101102 98883 97490 98867 97377 ** 1.59

30/520/400/V/L 112422 L 119416 114367 114042 112927 112846 112786 ** 0.32

30/520/400/F/L 147183 L 163112 157726 154218 149920 149446 149446 ** 1.54

30/520/400/V/T 114556 L 120170 115240 114922 114664 114641 114641 ** 0.07

30/520/400/F/T 150215 L 163675 168561 154606 152929 152745 152745 ** 1.68

30/700/100/V/L 47603 O 48723 47603 47612 47603 47614 47603 * 0.00

30/700/100/F/L 59321 L 63091 60272 60700 60184 60192 59995 ** 1.14

30/700/100/V/T 45822 L 47209 45905 46046 45880 46169 45875 ** 0.12

30/700/100/F/T 54597 L 56576 55104 55609 54926 55339 54904 ** 0.56

30/700/400/V/L 97001 L 105116 103787 98718 97982 97960 97960 ** 0.99

30/700/400/F/L 131233 L 145026 169760 152576 135109 135100 135100 ** 2.95

30/700/400/V/T 94333 L 101212 96680 96168 95781 95306 95306 ** 1.03

30/700/400/F/T 128027 L 141013 144926 131629 130856 130146 130146 ** 1.66

O :Optimal Value, L :Lower Bound, Italic type:Best Upper Bound, ** : New Best, * : Equivalent Best

21
st
 International Conference on Production Research

branching [14], IP search [15], MIP tabu search [16],
simplex-based tabu search [5], cooperative parallel tabu
search [10] and cycle-based tabu search [7]. The same
two data sets by Crainic et al. [6] are used. The detailed
description of these problem instances is given in [6].

The first set of instances, denoted C, consists of 37
instances characterized by the number of nodes, the
number of arcs and the number of commodities. Original C
instances consist of 43 problems. But because 6 problems
are trivial, their problems are excluded. Two letters are
used to characterize the design cost level, "F" for high and
"V" for low relative to the flow cost, and the capacity level
"T" for tight and "L" for loose compared to the total
demand.

The second set of instances, denoted R, consists of 153
problem instances characterized by three design cost
levels, "F01", "F05", "F10", and three capacity levels, "C1",
"C2", "C8". If the F value is small, the design costs are
low, and if the F value is large, the design costs are high
compared to the flow costs. If the C value is small, the arc
capacities are loose, and if large, the arc capacities are
tight compared to the total demand.

The experiments were performed on PCs with Pentium i7
CPU 2.93GHz with 4 cores, 16GBytes RAM. The computer
code is written in C++ compiled for Ubuntu 10.0. CPLEX
12.2, a MIP solver by ILOG, is used to solve linear
programming problems and mixed integer programming
problems. In order to assess the solution quality relative to
the optimal values or lower bounds, all instances using the
branch and bound algorithm of CPLEX are solved, and a
limit of 10 hours of computation time was imposed for
each instance. If the problem cannot be solved optimally
within the limit computation time, the lower bound found in
the branch and bound algorithm is used instead of the
optimal value.

A smoothing parameter  was calibrated, and ten values
from 0.025 to 0.250 were tested. An execution parameter
of a branch and bound algorithm, B =75 for each instance
initially. A branching parameter m set to 5, 10 and 15, and
the time limit T of a branch and bound algorithm set to
300 and 900 seconds.

Table 1 displays the average gaps of results for C
instances. The average gaps are relative to the optimal

value/lower bound by CPLEX for the upper bound by each
heuristics. RL is the result by the path relinking, LBR by
local branching, IP by IP search, and MIP by MIP Tabu
search. CAP is the best result found among all parameters
by the capacity scaling heuristics, and BEST by the
combining method with the capacity scaling and local
branching heuristics. Columns from 5-300 to 15-900 are
the results of the combining method. The first letter
indicates the branching parameter m , and the second
letter indicates the time limit T . Tables 2 display the
detailed results for C instances. Column N/A/K/Type
indicates the number of nodes, arcs, commodities, and the
design cost level and capacity level. Column OPT/LB
corresponds to the optimal value/lower bound by CPLEX.
"O" indicates that the optimal value is found, and "L"
indicates that the MIP solver stopped due to the time limit
condition and this value is a lower bound. Column CALB is
the best result by the combining method with the capacity
scaling and local branching heuristics. "*" indicates that
the combining method finds the same upper bound as the
current best upper bound, and "**" indicates that it finds
the new best upper bound.

In Table 1, when compared to MIP tabu search, which is
the best result among four other heuristics, the combining
method improves average gaps by 0.52%. In Tables 2, the
best solutions for 36 out of 37 problems and the new best
solutions for 26 problems in C instances can be obtained
by the combining method. The best solution for only one
problem cannot be found.

Table 3 displays the computation times in CPU seconds
for the capacity scaling heuristics, the combining method
and four other heuristics. These computational times are
reported in their papers. Due to the fact that different
CPUs are used, these computation times cannot be
compared directly. But compared to other heuristics, the
computational times by the capacity scaling heuristics are
very short, such as 76.3 seconds. The combining method
can be solved within a reasonable computation time, from
503.5 to 1550.5 seconds.

Table 4 displays the average gaps of results for R
instances. SIMP is the result by simplex-based tabu
search, PARA by cooperative parallel tabu search, and
CYCL by cycle-based tabu search. Path relinking

Table 3: Average CPU Times for C Instances (seconds)

RL

LBR IP MIP CAP 5-300 5-900 10-300 10-900 15-300 15-900

9432.3

574.6 408.1 6958.6 76.3 503.5 1550.4 644.4 1495.0 514.7 1390.5

Table 4: Average Gaps for C Instances (%)

SIMP PARA CYCL CAP CALB

9.52 6.03 3.64 0.65 0.19

Table 5: Gap Distribution According to Fixed Cost
and Capacity Level, R Instances (%)

 RL CALB

C1 C2 C8 C1 C2 C8

F01 0.76 0.78 1.15 0.00 -0.01 -0.12

F02 2.43 2.64 3.23 -0.14 -0.17 -0.43

F10 3.09 3.04 4.11 -0.58 -0.61 -0.62

Table 7: Average CPU Times for R instances (seconds)

SIMP PARA CYCL CAP 5-300 5-900 10-300 10-900 15-300 15-900

 785.4 989.7 1575.2 45.7 539.5 288.8 532.6 211.0 493.6 1390.5

Table 6: Gap Distribution According to Problem Dimensions, R
Instances (%)

N/A/K RL CALB N/A/K RL

CALB

10/25/10 0.00 0.00 20/100/40 1.37 0.00

10/25/25 0.23 0.00 20/100/100 2.05 -0.04

10/25/50 0.61 0.00 20/100/200 4.55 -0.12

10/50/10 0.08 0.00 20/200/40 3.59 -0.06

10/50/25 0.36 0.00 20/200/100 4.93 -0.66

10/50/50 1.14 0.00 20/200/100 5.41 -0.75

10/75/10 0.04 0.00 20/300/40 2.08 -0.33

10/75/25 0.41 0.00 20/300/100 4.68 -0.79

10/75/50 1.52 0.00 20/300/200 6.84 -2.24

heuristics and MIP tabu search heuristics solved R
instances, but these average gaps are not listed because
of no detailed results in their papers. In Table 4, when
compared to CYCL, the combining method improves
average gaps for 3.45%. Table 5 and 6 display the
distribution of the average gaps relative to the optimal
value/upper bound by CPLEX reported in [6]. The reason
for using the gaps based on upper bounds instead of lower
bounds is to compare the results of the combining method
against one of the path relinking heuristics. Table 5
displays the average gaps for the upper bound by RL and
CALB, according to the design cost level and the capacity
level of R instances. Table 6 displays the same
information, but according to problem dimensions. In table
5, the gap ranges of path relinking heuristics varies from
0.76% to 4.11%, but the range of the combining method
varies from -0.62% to 0.00%. The negative value means
that the upper bound is better than one by CPLEX. In
Table 6, the gap ranges of path relinking varies from
0.00% to 6.84%, but the range of the combining method
varies from -2.24% to 0.00%. All average gaps in left
column by CALB are 0.00%, and that indicates that the
optimal value is found by the combining method and
CPLEX.

Table 7 displays the computation times in CPU seconds
for the capacity scaling heuristics, the combining method
and three other heuristics, these computational times of
which are reported in their papers. Compared to other
heuristics, the computational times by the capacity scaling
heuristics are very short, such as 45.7 seconds. The
combining method can be solved within a reasonable
computation time, from 211.0 to 1390.5 seconds.

The combining method with the capacity scaling heuristics
and the local branch heuristics proposed in this paper
performs satisfactorily for CND. By these computational
results, the combining method can offer high quality
solutions with a reasonable computation time, and improve
most current best solutions. See detailed results at
http://www.rku.ac.jp/~katayama/ sub02english.htm.

7 CONCLUSION

In this paper, the combining method with the capacity
scaling heuristics using the column-row generation
technique for the strong formulation of CND and local
branching heuristics are proposed. The performance of the
combining method was evaluated by solving C and R
instances, and computational results are satisfactory. The
combining method can find the best or equivalent
solutions for 97% of C instances, and new best solutions
for 70% of problems.

The proposed combining method can offer high quality
results. For the column-row generation technique, the
computational effort can be reduced considerably. The
combining method proposed in this paper offers one of the
best current results among approximate solution
algorithms to resolve CND.

8 ACKNOWLEDGMENTS

This research was partially supported by the Ministry of
Education, Culture, Sports, Science and Technology,
Grant-in-Aid for Scientific Research (C), 21510155.

9 REFERENCES

[1] Magnanti T.L., Mireault P., Wong R.T., Tailoring
benders decomposition for uncapacitated network

design, Mathematical Programming Study ,1986, 26,
112-155.

[2] Holmberg K., Yuan D., A Lagrangian heuristics based
branch-and-bound approach for the capacitated
network design problem, Operations Research, 2000,
48, 461-481.

[3] Chouman M., Crainic T.G., Gendron B., A Cutting-
plane algorithm for multicommodity capacitated fixed-
charge network design, CRT-2009-20, CIRRELT,
Université de Montréal, 2009.

[4] Costa A.M., Cordeau J., Gendron B., Benders, metric
and cutset inequalities for multicommodity
capacitated network design, Computational
Optimization and Applications, 2009, 42, 371-392.

[5] Crainic T.G., Gendreau M., Farvolden J., A simplex-
based tabu search for capacitated network design,
Journal on Computing, 2000, 12, 223-236.

[6] Ghamlouche I., Crainic T.G., Gendreau M., Cycle-
based neighbourhoods for fixed-charge capacitated
multicommodity network design, CRT-2001-01,
CIRRELT, Université de Montréal, 2001.

[7] Ghamlouche I., Crainic T.G., Gendreau M., Cycle-
based neighborhoods for fixed-charge capacitated
multicommodity network design, Operations
Research, 2003, 51, 655-667.

[8] Ghamlouche I., Crainic T.G., Gendreau M., Path
relinking, cycle-based neighbourhoods and
capacitated multicommodity network design, Annals
of Operations Research, 2004, 131, 109-134.

[9] Alvarez A.M., González-Velarde J.L., De-Alba K.,
Scatter search for network design problem, Annals of
Operations Research, 2005, 138(1), 159--178.

[10] Crainic T.G., Gendron B., Cooperative parallel tabu
search for capacitated network design, Journal of
Heuristics, 2002, 8, 601-627.

[11] Crainic T.G., Li Y., Toulouse M., A first multilevel
cooperative algorithm for capacitated multicommodity
network design, Computers & Operations Research,
2006, 33, 2602-2622.

[12] Crainic T.G., Gendron B., Hernu G., A slope scaling/
Lagrangean perturbation heuristics with long-term
memory for multicommodity capacitated fixed-charge
network design, Journal of Heuristics, 2004, 10, 525-
545.

[13] Katayama N., Chen M., Kubo M., A capacity scaling
heuristics for the multicommodity capacitated
network design problem, Journal of Computational
and Applied Mathematics, 2009, 232, 90-101.

[14] Rodríguez-Martín I., Salazar-Gonzáleza J.J., A local
branching heuristics for the capacitated fixed-charge
network design problem, Computers & Operations
Research, 2010, 37, 575-581.

[15] Hewitt M., Nemhauser G.L., Savelsbergh M.,
Combining exact and heuristics approaches for the
capacitated fixed charge network flow problem,
Journal on Computing, 2010, 22, 314-325.

[16] Chouman M., Crainic T.G., A MIP-Tabu search hybrid
framework for multicommodity capacitated fixed-
charge network design, CRT-2010-31, CIRRELT,
Université de Montréal, 2010.

