Capacitated network design problems |
Results for C
Instances |
2018/02/21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Problem |
Problem |
Lower Bound/ Gurobi7/ 120h |
Upper Bound/
Gurobi7/ 120h |
Simplex-Based Tabu Search |
Cooperative
Parallel Tabu Search |
Cycle-Based
Neighborhoods |
Path
Relinking |
First
Multilevel Cooperative Tabu Search |
Capacity
Scaling Heuristics |
Local
Branching Heuristics |
IP Search |
MIP-Tabu
Search |
Learning
Mechanisms and Local Search Heuristics
(Node) |
Learning
Mechanisms and Local Search Heuristics
(Arc) |
Hybrid
Simulated Annealing and Simplex Method |
Hybrid
Simulated Annealing and Column Generation Approach |
ACO-based
Neighborhoods |
Combined
Capacity Scaling and Local Branching |
Cutting-Plane
Neighborhood Structure |
Genetic
Algorithm Based on Relaxation Induced Neighborhood Search |
Iterative
Linear Programming-based Heuristics |
Cycle-based
Evolutionary Algorithm |
Parallel
Local Search |
Capacity
Scaling and Greedy Heuristics |
Capacity
Scaling and MIP Neighborhood Search |
Tuned
Capacity Scaling and MIP Neighborhood Search |
Year |
|
2017 |
2017 |
2000 |
2002 |
2003 |
2004 |
2006 |
2009 |
2010 |
2010 |
2010 |
2011 |
2011 |
2011 |
2013 |
2014 |
2015 |
2015 |
2016 |
2016 |
2016 |
2017 |
2017 |
2018 |
2018 |
c100_400_10_F_L_10 |
100/400/10/F/L |
23949.0 |
23949.0 |
24912.0 |
24753.0 |
23949.0 |
24022.0 |
24022.0 |
24459.0 |
24690.0 |
23949.0 |
24161.0 |
24104.0 |
24104.0 |
25336.0 |
23949.0 |
23949.0 |
23949.0 |
23949.0 |
23949.0 |
23949.0 |
23949.0 |
24022.0 |
23949.0 |
23949.0 |
23949.0 |
c100_400_10_F_T_10 |
100/400/10/F/T |
63753.0 |
63753.0 |
71128.0 |
70045.0 |
67014.0 |
65278.0 |
66284.0 |
73566.0 |
67357.0 |
65885.0 |
67233.0 |
66171.0 |
66410.0 |
65131.0 |
65172.0 |
65187.0 |
63753.0 |
64034.0 |
64126.0 |
65247.0 |
65563.0 |
64207.0 |
68448.0 |
64018.0 |
63753.0 |
c100_400_10_V_L_10 |
100/400/10/V/L |
28423.0 |
28423.0 |
28485.0 |
28423.0 |
28677.0 |
28485.0 |
28553.0 |
28426.0 |
28423.0 |
28423.0 |
28423.0 |
28553.0 |
28553.0 |
28443.0 |
28423.0 |
28423.0 |
28423.0 |
28423.0 |
28423.0 |
28423.0 |
28423.0 |
28486.0 |
28599.0 |
28423.0 |
28423.0 |
c100_400_30_F_L_10 |
100/400/30/F/L |
49018.0 |
49018.0 |
58773.0 |
56994.0 |
51552.0 |
51325.0 |
50456.0 |
51956.0 |
49872.0 |
49694.0 |
49682.0 |
53066.0 |
52173.0 |
50281.0 |
49250.0 |
50012.0 |
49018.0 |
49018.0 |
49058.0 |
49018.0 |
49466.0 |
49018.0 |
49500.0 |
49115.0 |
49018.0 |
c100_400_30_F_T_10 |
100/400/30/F/T |
133223.4 |
136837.0 |
149282.0 |
147072.0 |
145144.0 |
141359.0 |
145721.0 |
144314.0 |
141633.0 |
141365.0 |
144349.0 |
143552.0 |
142411.0 |
142893.0 |
141014.0 |
139380.0 |
136803.0 |
136621.0 |
137845.0 |
138784.0 |
139535.0 |
136861.0 |
139181.0 |
137122.0 |
137122.0 |
c100_400_30_V_T_10 |
100/400/30/V/T |
384802.0 |
384802.0 |
385185.0 |
384949.0 |
385508.0 |
384926.0 |
385282.0 |
384883.0 |
384809.0 |
384836.0 |
384940.0 |
384951.0 |
384828.0 |
384934.0 |
384802.0 |
384802.0 |
384802.0 |
384802.0 |
384802.0 |
384802.0 |
384999.0 |
384802.0 |
384809.0 |
384802.0 |
384802.0 |
c33 |
20/230/040/V/L |
423848.0 |
423848.0 |
425046.0 |
424509.0 |
424778.0 |
424385.0 |
426702.0 |
424075.0 |
423848.0 |
424385.0 |
423848.0 |
|
|
423848.0 |
423848.0 |
423848.0 |
423848.0 |
423848.0 |
423848.0 |
423848.0 |
423848.0 |
424075.0 |
423933.0 |
423848.0 |
423848.0 |
c35 |
20/230/040/V/T |
371475.0 |
371475.0 |
371816.0 |
371816.0 |
371893.0 |
371811.0 |
371475.0 |
371906.0 |
371475.0 |
371779.0 |
371475.0 |
|
|
371475.0 |
371475.0 |
371475.0 |
371475.0 |
371475.0 |
371475.0 |
371475.0 |
371475.0 |
371573.0 |
371475.0 |
371475.0 |
371475.0 |
c36 |
20/230/040/F/T |
643036.0 |
643036.0 |
644172.0 |
643774.0 |
645812.0 |
645548.0 |
652894.0 |
644483.0 |
643036.0 |
643187.0 |
643538.0 |
|
|
645412.0 |
643036.0 |
643036.0 |
643036.0 |
643036.0 |
643036.0 |
643036.0 |
643187.0 |
643036.0 |
644132.0 |
643036.0 |
643036.0 |
c37 |
20/230/200/V/L |
94213.0 |
94213.0 |
122592.0 |
106754.0 |
98995.0 |
100404.0 |
98582.0 |
94247.0 |
95295.0 |
95097.0 |
94218.0 |
102492.0 |
102492.0 |
95638.0 |
94283.0 |
94213.0 |
94213.0 |
94213.0 |
94213.0 |
94218.0 |
94468.0 |
94213.0 |
94228.0 |
94213.0 |
94213.0 |
c38 |
20/230/200/F/L |
137642.3 |
137642.3 |
188590.0 |
178841.0 |
146535.0 |
147988.0 |
143150.0 |
137642.0 |
143446.0 |
141253.0 |
138491.0 |
150617.0 |
151961.0 |
140263.0 |
137842.0 |
138109.0 |
137642.3 |
137642.0 |
137854.0 |
138348.0 |
138954.0 |
137642.0 |
138123.0 |
137763.7 |
137763.7 |
c39 |
20/230/200/V/T |
97914.0 |
97914.0 |
118057.0 |
112558.0 |
104752.0 |
104689.0 |
102030.0 |
97968.0 |
98039.0 |
99410.0 |
98612.0 |
103700.0 |
103700.0 |
99589.0 |
97914.0 |
97914.0 |
97914.0 |
97914.0 |
97914.0 |
97914.0 |
98209.0 |
97914.0 |
97968.0 |
97914.0 |
97914.0 |
c40 |
20/230/200/F/T |
135863.1 |
135863.1 |
182829.0 |
167173.0 |
147385.0 |
147554.0 |
141188.0 |
136130.0 |
141128.0 |
140273.0 |
136309.0 |
144895.0 |
149284.0 |
137729.0 |
137072.0 |
137162.5 |
135863.1 |
135991.0 |
137449.0 |
136102.0 |
137131.0 |
135867.0 |
136115.0 |
136036.0 |
136031.0 |
c41 |
20/300/040/V/L |
429398.0 |
429398.0 |
429912.0 |
429912.0 |
429535.0 |
429398.0 |
429837.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
|
|
429417.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
429398.0 |
c42 |
20/300/040/F/L |
586077.0 |
586077.0 |
589190.0 |
586406.0 |
593322.0 |
590427.0 |
593544.0 |
587800.0 |
586077.0 |
586077.0 |
588464.0 |
|
|
589081.0 |
586077.0 |
586077.0 |
586077.0 |
586077.0 |
586077.0 |
586077.0 |
586077.0 |
586077.0 |
588229.0 |
586077.0 |
586077.0 |
c43 |
20/300/040/V/T |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
464724.0 |
464509.0 |
466004.0 |
464569.0 |
464509.0 |
464509.0 |
464509.0 |
|
|
464509.0 |
464627.0 |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
464509.0 |
c44 |
20/300/040/F/T |
604198.0 |
604198.0 |
606364.0 |
604781.0 |
607100.0 |
609990.0 |
619203.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
|
|
610243.0 |
604201.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
604198.0 |
c45 |
20/300/200/V/L |
74811.0 |
74811.0 |
88398.0 |
82580.0 |
80819.0 |
78184.0 |
78209.5 |
74913.0 |
76375.0 |
75319.0 |
75045.0 |
79791.5 |
81307.0 |
76112.0 |
74902.0 |
75084.0 |
74811.0 |
74946.0 |
75366.0 |
75003.0 |
75279.0 |
74811.0 |
74840.0 |
74895.6 |
74811.0 |
c46 |
20/300/200/F/L |
115151.5 |
115489.0 |
151317.0 |
135330.0 |
123347.0 |
123484.0 |
121951.0 |
115784.0 |
119142.8 |
117543.0 |
116259.0 |
128258.0 |
125421.0 |
116346.0 |
116431.0 |
116861.0 |
115526.0 |
115574.0 |
115963.0 |
116759.0 |
116801.0 |
115580.0 |
115676.5 |
115933.3 |
115539.0 |
c47 |
20/300/200/V/T |
74991.0 |
74991.0 |
82724.0 |
83420.0 |
79619.0 |
78866.8 |
77251.0 |
75302.0 |
76167.5 |
76198.0 |
74995.0 |
81453.0 |
81453.0 |
76095.0 |
74991.0 |
74991.0 |
74991.0 |
74991.0 |
74991.0 |
74991.0 |
75444.0 |
74991.0 |
74995.0 |
74991.0 |
74991.0 |
c48 |
20/300/200/F/T |
107102.0 |
107102.0 |
135593.0 |
123047.0 |
114484.0 |
113584.0 |
111173.0 |
107858.0 |
109808.0 |
110344.0 |
109164.0 |
114269.0 |
114259.0 |
108388.0 |
108638.0 |
107169.0 |
107167.0 |
107284.0 |
107102.0 |
107102.0 |
107546.0 |
107102.0 |
107420.7 |
107323.5 |
107102.0 |
c49 |
30/520/100/V/L |
53958.0 |
53958.0 |
56426.0 |
55152.0 |
54958.0 |
54904.0 |
55754.0 |
54088.0 |
54026.0 |
54113.0 |
54008.0 |
|
|
54243.0 |
53983.0 |
53966.0 |
53958.0 |
53958.0 |
53974.0 |
53958.0 |
54099.0 |
53978.0 |
53974.0 |
53958.0 |
53958.0 |
c50 |
30/520/100/F/L |
93922.3 |
93922.3 |
104117.0 |
101134.0 |
99586.0 |
102054.0 |
99817.0 |
94801.0 |
96255.0 |
94388.0 |
93967.0 |
|
|
98678.0 |
94066.0 |
94653.0 |
93967.0 |
94043.0 |
94094.0 |
93991.0 |
94621.0 |
93967.0 |
94066.0 |
94094.0 |
93967.0 |
c51 |
30/520/100/V/T |
52046.0 |
52046.0 |
53288.0 |
52892.0 |
52985.0 |
53017.0 |
53512.0 |
52282.0 |
52129.0 |
52174.0 |
52156.0 |
|
|
52480.0 |
52247.0 |
52079.0 |
52046.0 |
52046.0 |
52046.0 |
52046.0 |
52182.0 |
52046.0 |
52046.0 |
52046.0 |
52046.0 |
c52 |
30/520/100/F/T |
96917.5 |
97098.0 |
107894.0 |
103758.0 |
105523.0 |
106130.0 |
102477.0 |
98839.0 |
101102.0 |
98883.0 |
97490.0 |
106912.0 |
107266.0 |
101513.0 |
98543.0 |
97581.3 |
97107.0 |
97361.0 |
98333.0 |
97711.0 |
97856.0 |
97862.0 |
97913.5 |
97175.5 |
97107.0 |
c53 |
30/520/400/V/L |
112774.4 |
112774.4 |
125831.0 |
122776.0 |
120652.0 |
119416.0 |
115671.0 |
112846.0 |
114367.4 |
114042.0 |
112927.0 |
115918.0 |
115918.0 |
112973.0 |
113720.0 |
113018.6 |
112774.4 |
112786.0 |
112871.0 |
112957.0 |
113193.0 |
112787.0 |
112774.4 |
112784.0 |
112774.4 |
c54 |
30/520/400/F/L |
148661.5 |
149093.2 |
177409.0 |
168144.0 |
161098.0 |
163112.0 |
156601.0 |
149446.0 |
157725.5 |
154218.0 |
149920.0 |
161205.0 |
159084.0 |
154233.0 |
151009.0 |
149944.0 |
149151.0 |
149328.0 |
150624.0 |
151134.0 |
151145.0 |
149677.0 |
149093.2 |
149093.2 |
149093.2 |
c55 |
30/520/400/V/T |
114640.5 |
114640.5 |
125518.0 |
121329.0 |
121588.0 |
120170.0 |
120980.0 |
114641.0 |
115240.0 |
114922.0 |
114664.0 |
118835.0 |
118705.0 |
116181.0 |
115581.0 |
115038.0 |
114640.5 |
114640.0 |
114884.0 |
114757.0 |
115697.0 |
114641.0 |
114640.5 |
114640.5 |
114640.5 |
c56 |
30/520/400/F/T |
151382.2 |
152375.1 |
174526.0 |
170134.0 |
167939.0 |
163675.0 |
160217.0 |
152744.0 |
168561.0 |
154606.0 |
152929.0 |
161102.0 |
161102.0 |
146295.0 |
147369.0 |
159919.5 |
152476.7 |
152745.0 |
154044.0 |
154859.0 |
154425.0 |
154137.0 |
152556.3 |
152609.3 |
152508.0 |
c57 |
30/700/100/V/L |
47603.0 |
47603.0 |
48984.0 |
48186.0 |
48398.0 |
48723.0 |
48869.0 |
47635.0 |
47603.0 |
47612.0 |
47603.0 |
|
|
48156.0 |
47603.0 |
47603.0 |
47603.0 |
47603.0 |
47603.0 |
47603.0 |
47603.0 |
47603.0 |
47612.0 |
47603.0 |
47603.0 |
c58 |
30/700/100/F/L |
59958.0 |
59958.0 |
65356.0 |
64603.0 |
62471.0 |
63091.0 |
63756.0 |
60194.0 |
60272.0 |
60700.0 |
60184.0 |
|
|
62574.0 |
60391.0 |
60184.0 |
59958.0 |
59987.0 |
60184.0 |
60011.0 |
60538.0 |
60058.0 |
60058.0 |
59958.0 |
59958.0 |
c59 |
30/700/100/V/T |
45871.5 |
45871.5 |
47083.0 |
47083.0 |
47025.0 |
47209.0 |
47457.0 |
46169.0 |
45905.0 |
46046.0 |
45880.0 |
|
|
46255.0 |
45956.0 |
45875.0 |
45871.5 |
45875.0 |
45905.0 |
45908.0 |
46082.0 |
45879.0 |
45907.0 |
45890.0 |
45873.0 |
c60 |
30/700/100/F/T |
54904.0 |
54904.0 |
58804.0 |
57486.0 |
57886.0 |
56575.5 |
56910.0 |
55359.0 |
55104.0 |
55609.0 |
54926.0 |
55741.0 |
58032.7 |
56591.0 |
54975.0 |
54904.0 |
54912.0 |
54904.0 |
54925.0 |
54904.0 |
55135.0 |
54904.0 |
55024.0 |
54904.0 |
54904.0 |
c61 |
30/700/400/V/L |
97829.8 |
97829.8 |
110000.0 |
108812.0 |
106777.0 |
105116.0 |
102631.0 |
97972.0 |
103787.0 |
98718.0 |
97982.0 |
102906.0 |
102530.0 |
|
99316.0 |
97808.6 |
97853.4 |
97960.0 |
98747.0 |
98534.0 |
98729.0 |
98090.0 |
97924.0 |
97951.1 |
97889.5 |
c62 |
30/700/400/F/L |
132503.1 |
134494.9 |
165484.0 |
152164.0 |
148950.0 |
145026.0 |
143988.0 |
135064.0 |
169759.7 |
152576.0 |
135109.0 |
148862.0 |
146921.0 |
|
133976.0 |
137539.7 |
134553.7 |
135128.0 |
136748.0 |
141170.0 |
137112.0 |
136257.0 |
134870.1 |
134714.6 |
134661.2 |
c63 |
30/700/400/V/T |
95021.0 |
95249.6 |
103768.0 |
101859.0 |
101672.0 |
101212.0 |
99194.9 |
95306.0 |
96680.0 |
96168.0 |
95781.0 |
98911.0 |
98911.0 |
|
95538.0 |
95271.0 |
95249.6 |
95321.0 |
95704.0 |
95863.0 |
96130.0 |
95651.0 |
95268.9 |
95316.0 |
95268.4 |
c64 |
30/700/400/F/T |
128968.8 |
129908.8 |
150919.0 |
144948.0 |
142778.0 |
141013.0 |
138266.0 |
130148.0 |
144925.5 |
131629.0 |
130856.0 |
139055.0 |
141096.0 |
|
131473.0 |
130106.9 |
129990.0 |
130197.0 |
130842.0 |
131814.0 |
132425.0 |
131104.0 |
130115.7 |
130068.9 |
129982.3 |
Average |
|
176496.2 |
176731.8 |
189034.6 |
185083.9 |
182033.2 |
181531.4 |
181070.6 |
177605.7 |
180058.6 |
178365.6 |
177397.1 |
|
|
|
|
|
176744.0 |
176806.1 |
177111.5 |
177308.7 |
177444.1 |
176946.6 |
177123.5 |
176806.7 |
176762.3 |
Gaps |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c100_400_10_F_L_10 |
|
|
0.00% |
4.02% |
3.36% |
0.00% |
0.30% |
0.30% |
2.13% |
3.09% |
0.00% |
0.89% |
0.65% |
0.65% |
5.79% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.30% |
0.00% |
0.00% |
0.00% |
c100_400_10_F_T_10 |
|
|
0.00% |
11.57% |
9.87% |
5.12% |
2.39% |
3.97% |
15.39% |
5.65% |
3.34% |
5.46% |
3.79% |
4.17% |
2.16% |
2.23% |
2.25% |
0.00% |
0.44% |
0.59% |
2.34% |
2.84% |
0.71% |
7.36% |
0.42% |
0.00% |
c100_400_10_V_L_10 |
|
|
0.00% |
0.22% |
0.00% |
0.89% |
0.22% |
0.46% |
0.01% |
0.00% |
0.00% |
0.00% |
0.46% |
0.46% |
0.07% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.22% |
0.62% |
0.00% |
0.00% |
c100_400_30_F_L_10 |
|
|
0.00% |
19.90% |
16.27% |
5.17% |
4.71% |
2.93% |
5.99% |
1.74% |
1.38% |
1.35% |
8.26% |
6.44% |
2.58% |
0.47% |
2.03% |
0.00% |
0.00% |
0.08% |
0.00% |
0.91% |
0.00% |
0.98% |
0.20% |
0.00% |
c100_400_30_F_T_10 |
|
|
2.71% |
12.05% |
10.39% |
8.95% |
6.11% |
9.38% |
8.32% |
6.31% |
6.11% |
8.35% |
7.75% |
6.90% |
7.26% |
5.85% |
4.62% |
2.69% |
2.55% |
3.47% |
4.17% |
4.74% |
2.73% |
4.47% |
2.93% |
2.93% |
c100_400_30_V_T_10 |
|
|
0.00% |
0.10% |
0.04% |
0.18% |
0.03% |
0.12% |
0.02% |
0.00% |
0.01% |
0.04% |
0.04% |
0.01% |
0.03% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.05% |
0.00% |
0.00% |
0.00% |
0.00% |
c33 |
|
|
0.00% |
0.28% |
0.16% |
0.22% |
0.13% |
0.67% |
0.05% |
0.00% |
0.13% |
0.00% |
|
|
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.05% |
0.02% |
0.00% |
0.00% |
c35 |
|
|
0.00% |
0.09% |
0.09% |
0.11% |
0.09% |
0.00% |
0.12% |
0.00% |
0.08% |
0.00% |
|
|
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.03% |
0.00% |
0.00% |
0.00% |
c36 |
|
|
0.00% |
0.18% |
0.11% |
0.43% |
0.39% |
1.53% |
0.23% |
0.00% |
0.02% |
0.08% |
|
|
0.37% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.02% |
0.00% |
0.17% |
0.00% |
0.00% |
c37 |
|
|
0.00% |
30.12% |
13.31% |
5.08% |
6.57% |
4.64% |
0.04% |
1.15% |
0.94% |
0.01% |
8.79% |
8.79% |
1.51% |
0.07% |
0.00% |
0.00% |
0.00% |
0.00% |
0.01% |
0.27% |
0.00% |
0.02% |
0.00% |
0.00% |
c38 |
|
|
0.00% |
37.01% |
29.93% |
6.46% |
7.52% |
4.00% |
0.00% |
4.22% |
2.62% |
0.62% |
9.43% |
10.40% |
1.90% |
0.15% |
0.34% |
0.00% |
0.00% |
0.15% |
0.51% |
0.95% |
0.00% |
0.35% |
0.09% |
0.09% |
c39 |
|
|
0.00% |
20.57% |
14.96% |
6.98% |
6.92% |
4.20% |
0.06% |
0.13% |
1.53% |
0.71% |
5.91% |
5.91% |
1.71% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.30% |
0.00% |
0.06% |
0.00% |
0.00% |
c40 |
|
|
0.00% |
34.57% |
23.05% |
8.48% |
8.60% |
3.92% |
0.20% |
3.88% |
3.25% |
0.33% |
6.65% |
9.88% |
1.37% |
0.89% |
0.96% |
0.00% |
0.09% |
1.17% |
0.18% |
0.93% |
0.00% |
0.19% |
0.13% |
0.12% |
c41 |
|
|
0.00% |
0.12% |
0.12% |
0.03% |
0.00% |
0.10% |
0.00% |
0.00% |
0.00% |
0.00% |
|
|
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
c42 |
|
|
0.00% |
0.53% |
0.06% |
1.24% |
0.74% |
1.27% |
0.29% |
0.00% |
0.00% |
0.41% |
|
|
0.51% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.37% |
0.00% |
0.00% |
c43 |
|
|
0.00% |
0.00% |
0.00% |
0.05% |
0.00% |
0.32% |
0.01% |
0.00% |
0.00% |
0.00% |
|
|
0.00% |
0.03% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
c44 |
|
|
0.00% |
0.36% |
0.10% |
0.48% |
0.96% |
2.48% |
0.00% |
0.00% |
0.00% |
0.00% |
|
|
1.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
c45 |
|
|
0.00% |
18.16% |
10.38% |
8.03% |
4.51% |
4.54% |
0.14% |
2.09% |
0.68% |
0.31% |
6.66% |
8.68% |
1.74% |
0.12% |
0.36% |
0.00% |
0.18% |
0.74% |
0.26% |
0.63% |
0.00% |
0.04% |
0.11% |
0.00% |
c46 |
|
|
0.29% |
31.41% |
17.52% |
7.12% |
7.24% |
5.90% |
0.55% |
3.47% |
2.08% |
0.96% |
11.38% |
8.92% |
1.04% |
1.11% |
1.48% |
0.33% |
0.37% |
0.70% |
1.40% |
1.43% |
0.37% |
0.46% |
0.68% |
0.34% |
c47 |
|
|
0.00% |
10.31% |
11.24% |
6.17% |
5.17% |
3.01% |
0.41% |
1.57% |
1.61% |
0.01% |
8.62% |
8.62% |
1.47% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.60% |
0.00% |
0.01% |
0.00% |
0.00% |
c48 |
|
|
0.00% |
26.60% |
14.89% |
6.89% |
6.05% |
3.80% |
0.71% |
2.53% |
3.03% |
1.93% |
6.69% |
6.68% |
1.20% |
1.43% |
0.06% |
0.06% |
0.17% |
0.00% |
0.00% |
0.41% |
0.00% |
0.30% |
0.21% |
0.00% |
c49 |
|
|
0.00% |
4.57% |
2.21% |
1.85% |
1.75% |
3.33% |
0.24% |
0.13% |
0.29% |
0.09% |
|
|
0.53% |
0.05% |
0.01% |
0.00% |
0.00% |
0.03% |
0.00% |
0.26% |
0.04% |
0.03% |
0.00% |
0.00% |
c50 |
|
|
0.00% |
10.85% |
7.68% |
6.03% |
8.66% |
6.28% |
0.94% |
2.48% |
0.50% |
0.05% |
|
|
5.06% |
0.15% |
0.78% |
0.05% |
0.13% |
0.18% |
0.07% |
0.74% |
0.05% |
0.15% |
0.18% |
0.05% |
c51 |
|
|
0.00% |
2.39% |
1.63% |
1.80% |
1.87% |
2.82% |
0.45% |
0.16% |
0.25% |
0.21% |
|
|
0.83% |
0.39% |
0.06% |
0.00% |
0.00% |
0.00% |
0.00% |
0.26% |
0.00% |
0.00% |
0.00% |
0.00% |
c52 |
|
|
0.19% |
11.33% |
7.06% |
8.88% |
9.51% |
5.74% |
1.98% |
4.32% |
2.03% |
0.59% |
10.31% |
10.68% |
4.74% |
1.68% |
0.68% |
0.20% |
0.46% |
1.46% |
0.82% |
0.97% |
0.97% |
1.03% |
0.27% |
0.20% |
c53 |
|
|
0.00% |
11.58% |
8.87% |
6.99% |
5.89% |
2.57% |
0.06% |
1.41% |
1.12% |
0.14% |
2.79% |
2.79% |
0.18% |
0.84% |
0.22% |
0.00% |
0.01% |
0.09% |
0.16% |
0.37% |
0.01% |
0.00% |
0.01% |
0.00% |
c54 |
|
|
0.29% |
19.34% |
13.11% |
8.37% |
9.72% |
5.34% |
0.53% |
6.10% |
3.74% |
0.85% |
8.44% |
7.01% |
3.75% |
1.58% |
0.86% |
0.33% |
0.45% |
1.32% |
1.66% |
1.67% |
0.68% |
0.29% |
0.29% |
0.29% |
c55 |
|
|
0.00% |
9.49% |
5.83% |
6.06% |
4.82% |
5.53% |
0.00% |
0.52% |
0.25% |
0.02% |
3.66% |
3.55% |
1.34% |
0.82% |
0.35% |
0.00% |
0.00% |
0.21% |
0.10% |
0.92% |
0.00% |
0.00% |
0.00% |
0.00% |
c56 |
|
|
0.66% |
15.29% |
12.39% |
10.94% |
8.12% |
5.84% |
0.90% |
11.35% |
2.13% |
1.02% |
6.42% |
6.42% |
- |
- |
5.64% |
0.72% |
0.90% |
1.76% |
2.30% |
2.01% |
1.82% |
0.78% |
0.81% |
0.74% |
c57 |
|
|
0.00% |
2.90% |
1.22% |
1.67% |
2.35% |
2.66% |
0.07% |
0.00% |
0.02% |
0.00% |
|
|
1.16% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.00% |
0.02% |
0.00% |
0.00% |
c58 |
|
|
0.00% |
9.00% |
7.75% |
4.19% |
5.23% |
6.33% |
0.39% |
0.52% |
1.24% |
0.38% |
|
|
4.36% |
0.72% |
0.38% |
0.00% |
0.05% |
0.38% |
0.09% |
0.97% |
0.17% |
0.17% |
0.00% |
0.00% |
c59 |
|
|
0.00% |
2.64% |
2.64% |
2.51% |
2.92% |
3.46% |
0.65% |
0.07% |
0.38% |
0.02% |
|
|
0.84% |
0.18% |
0.01% |
0.00% |
0.01% |
0.07% |
0.08% |
0.46% |
0.02% |
0.08% |
0.04% |
0.00% |
c60 |
|
|
0.00% |
7.10% |
4.70% |
5.43% |
3.04% |
3.65% |
0.83% |
0.36% |
1.28% |
0.04% |
1.52% |
5.70% |
3.07% |
0.13% |
0.00% |
0.01% |
0.00% |
0.04% |
0.00% |
0.42% |
0.00% |
0.22% |
0.00% |
0.00% |
c61 |
|
|
0.00% |
12.44% |
11.23% |
9.15% |
7.45% |
4.91% |
0.15% |
6.09% |
0.91% |
0.16% |
5.19% |
4.80% |
|
1.52% |
- |
0.02% |
0.13% |
0.94% |
0.72% |
0.92% |
0.27% |
0.10% |
0.12% |
0.06% |
c62 |
|
|
1.50% |
24.89% |
14.84% |
12.41% |
9.45% |
8.67% |
1.93% |
28.12% |
15.15% |
1.97% |
12.35% |
10.88% |
|
1.11% |
3.80% |
1.55% |
1.98% |
3.20% |
6.54% |
3.48% |
2.83% |
1.79% |
1.67% |
1.63% |
c63 |
|
|
0.24% |
9.21% |
7.20% |
7.00% |
6.52% |
4.39% |
0.30% |
1.75% |
1.21% |
0.80% |
4.09% |
4.09% |
|
0.54% |
0.26% |
0.24% |
0.32% |
0.72% |
0.89% |
1.17% |
0.66% |
0.26% |
0.31% |
0.26% |
c64 |
|
|
0.73% |
17.02% |
12.39% |
10.71% |
9.34% |
7.21% |
0.91% |
12.37% |
2.06% |
1.46% |
7.82% |
9.40% |
|
1.94% |
0.88% |
0.79% |
0.95% |
1.45% |
2.21% |
2.68% |
1.66% |
0.89% |
0.85% |
0.79% |
Average Gap |
|
- |
0.18% |
11.57% |
8.02% |
4.92% |
4.47% |
3.68% |
1.22% |
3.02% |
1.60% |
0.79% |
6.15% |
6.33% |
1.80% |
0.67% |
0.72% |
0.19% |
0.25% |
0.51% |
0.66% |
0.85% |
0.37% |
0.57% |
0.25% |
0.20% |
Computation Times |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
c100_400_10_F_L_10 |
100/400/10/F/L |
22.6 |
23 |
33 |
469 |
307 |
83 |
786 |
93 |
600 |
9 |
109 |
77 |
78 |
35 |
17 |
2834 |
78 |
786 |
1 |
3600 |
98 |
1 |
0 |
51 |
16 |
c100_400_10_F_T_10 |
100/400/10/F/T |
38249.8 |
38250 |
81 |
618 |
627 |
210 |
1991 |
56 |
600 |
813 |
918 |
341 |
219 |
1424 |
29 |
10800 |
10423 |
822 |
1 |
3600 |
567 |
53 |
1 |
238 |
165 |
c100_400_10_V_L_10 |
100/400/10/V/L |
0.4 |
0 |
33 |
597 |
336 |
89 |
846 |
6 |
547 |
35 |
49 |
83 |
83 |
53 |
25 |
7 |
2 |
5 |
33 |
3600 |
3782 |
3 |
0 |
1 |
1 |
c100_400_30_F_L_10 |
100/400/30/F/L |
412.2 |
412 |
100 |
1439 |
1301 |
315 |
2988 |
622 |
600 |
886 |
2068 |
322 |
294 |
1629 |
74 |
699 |
2165 |
367 |
386 |
3600 |
1987 |
29 |
3 |
199 |
102 |
c100_400_30_F_T_10 |
100/400/30/F/T |
432000.0 |
432000 |
216 |
922 |
1870 |
481 |
4561 |
154 |
600 |
888 |
145 |
620 |
463 |
2193 |
201 |
10800 |
18731 |
377 |
239 |
3600 |
4003 |
79 |
8 |
344 |
304 |
c100_400_30_V_T_10 |
100/400/30/V/T |
13.5 |
14 |
278 |
800 |
1975 |
493 |
4674 |
18 |
600 |
330 |
85 |
564 |
631 |
1703 |
65 |
691 |
69 |
31 |
362 |
3600 |
12764 |
42 |
0 |
32 |
25 |
c33 |
20/230/040/V/L |
0.9 |
1 |
71 |
216 |
370 |
149 |
1411 |
3 |
328 |
4 |
116 |
|
|
102 |
118 |
6 |
1 |
11 |
507 |
3600 |
1082 |
2 |
0 |
1 |
1 |
c35 |
20/230/040/V/T |
2.0 |
2 |
90 |
218 |
436 |
157 |
1488 |
3 |
440 |
41 |
37 |
|
|
142 |
386 |
9 |
3 |
5 |
1 |
3600 |
124 |
1 |
0 |
4 |
2 |
c36 |
20/230/040/F/T |
2.6 |
3 |
122 |
235 |
423 |
172 |
1633 |
4 |
600 |
45 |
63 |
|
|
113 |
168 |
23 |
10 |
38 |
8 |
3600 |
965 |
10 |
0 |
5 |
4 |
c37 |
20/230/200/V/L |
3139.5 |
3140 |
505 |
4471 |
2663 |
2495 |
23663 |
442 |
600 |
822 |
8328 |
3236 |
3324 |
4827 |
2460 |
2306 |
6061 |
1523 |
2 |
3600 |
3765 |
123 |
10 |
260 |
218 |
c38 |
20/230/200/F/L |
12308.2 |
12308 |
492 |
4183 |
2718 |
2878 |
27299 |
1658 |
600 |
691 |
15006 |
2955 |
3230 |
7242 |
1100 |
2668 |
6723 |
2085 |
2 |
3600 |
4054 |
144 |
11 |
403 |
193 |
c39 |
20/230/200/V/T |
1180.8 |
1181 |
548 |
3588 |
2566 |
2211 |
20969 |
524 |
600 |
821 |
3965 |
2921 |
2935 |
4911 |
2351 |
1414 |
2706 |
2483 |
379 |
3600 |
3300 |
52 |
8 |
225 |
184 |
c40 |
20/230/200/F/T |
43494.9 |
43495 |
890 |
1511 |
3120 |
3386 |
32112 |
1944 |
600 |
156 |
835 |
4220 |
4733 |
6729 |
1249 |
5216 |
9707 |
1297 |
432 |
3600 |
3129 |
240 |
29 |
338 |
225 |
c41 |
20/300/040/V/L |
0.4 |
0 |
71 |
231 |
612 |
225 |
2133 |
3 |
146 |
19 |
83 |
|
|
92 |
197 |
7 |
1 |
4 |
391 |
3600 |
108 |
1 |
0 |
1 |
0 |
c42 |
20/300/040/F/L |
2.8 |
3 |
113 |
301 |
582 |
228 |
2165 |
6 |
600 |
29 |
46 |
|
|
428 |
283 |
16 |
8 |
56 |
461 |
3600 |
379 |
16 |
0 |
5 |
4 |
c43 |
20/300/040/V/T |
1.1 |
1 |
145 |
299 |
590 |
248 |
2351 |
4 |
600 |
24 |
161 |
|
|
231 |
111 |
11 |
4 |
3 |
304 |
3600 |
3456 |
23 |
0 |
1 |
1 |
c44 |
20/300/040/F/T |
1.3 |
1 |
123 |
283 |
560 |
214 |
2034 |
4 |
600 |
68 |
35 |
|
|
372 |
184 |
12 |
4 |
3 |
319 |
3600 |
267 |
3 |
0 |
1 |
1 |
c45 |
20/300/200/V/L |
40636.7 |
40637 |
982 |
6281 |
4087 |
3566 |
33822 |
348 |
600 |
802 |
4476 |
4900 |
4474 |
18000 |
2964 |
2646 |
10622 |
4392 |
273 |
3600 |
3246 |
361 |
18 |
293 |
245 |
c46 |
20/300/200/F/L |
432000.0 |
432000 |
1317 |
5962 |
4368 |
4013 |
38057 |
1290 |
600 |
686 |
9109 |
4665 |
4047 |
14392 |
1046 |
2564 |
14044 |
3279 |
369 |
3600 |
4112 |
250 |
24 |
263 |
264 |
c47 |
20/300/200/V/T |
1211.9 |
1212 |
938 |
4737 |
3808 |
3924 |
37219 |
429 |
600 |
388 |
1913 |
5158 |
4772 |
5182 |
4022 |
2750 |
2550 |
1837 |
583 |
3600 |
3567 |
58 |
13 |
258 |
216 |
c48 |
20/300/200/F/T |
69464.5 |
69464 |
1066 |
6222 |
4658 |
3857 |
36582 |
1722 |
600 |
396 |
542 |
4692 |
4532 |
6720 |
2486 |
1988 |
8720 |
6083 |
452 |
3600 |
7823 |
122 |
25 |
276 |
269 |
c49 |
30/520/100/V/L |
179.7 |
180 |
996 |
2630 |
3356 |
1194 |
11325 |
27 |
600 |
218 |
2415 |
|
|
93 |
1372 |
673 |
1680 |
329 |
296 |
3600 |
5324 |
20 |
2 |
198 |
139 |
c50 |
30/520/100/F/L |
33061.6 |
33062 |
939 |
3070 |
4032 |
1460 |
13847 |
407 |
600 |
226 |
2925 |
|
|
8401 |
928 |
1983 |
7500 |
2004 |
571 |
3600 |
6234 |
83 |
13 |
378 |
229 |
c51 |
30/520/100/V/T |
1073.3 |
1073 |
1219 |
3225 |
3481 |
1514 |
14357 |
37 |
600 |
455 |
2521 |
|
|
2396 |
9127 |
751 |
4049 |
1850 |
25 |
3600 |
12878 |
32 |
1 |
233 |
122 |
c52 |
30/520/100/F/T |
432000.0 |
432000 |
670 |
5247 |
3927 |
1523 |
14441 .9 |
200 |
600 |
815 |
4161 |
1134 |
1258 |
11429 |
1008 |
964 |
15792 |
978 |
198 |
3600 |
3678 |
158 |
15 |
287 |
325 |
c53 |
30/520/400/V/L |
23551.2 |
23551 |
5789 |
11337 |
36531 |
27477 |
260608 |
568 |
600 |
394 |
22797 |
82551 |
95761 |
18000 |
12904 |
3303 |
9502 |
3009 |
204 |
3600 |
15328 |
542 |
64 |
275 |
216 |
c54 |
30/520/400/F/L |
432000.0 |
432000 |
6407 |
29132 |
42930 |
36669 |
347788 |
2610 |
600 |
750 |
5769 |
54686 |
62758 |
18000 |
9731 |
3723 |
11131 |
4231 |
278 |
3600 |
12333 |
463 |
71 |
303 |
260 |
c55 |
30/520/400/V/T |
10910.9 |
10911 |
6522 |
19755 |
28214 |
23089 |
218987 |
230 |
600 |
621 |
38793 |
44631 |
60089 |
16282 |
18000 |
7802 |
8263 |
4103 |
441 |
3600 |
4234 |
461 |
30 |
244 |
201 |
c56 |
30/520/400/F/T |
432000.0 |
432000 |
8415 |
19168 |
40011 |
52173 |
494833 |
1674 |
600 |
466 |
8556 |
114120 |
107664 |
18000 |
9346 |
13258 |
19594 |
5238 |
335 |
3600 |
6454 |
288 |
122 |
322 |
283 |
c57 |
30/700/100/V/L |
18.4 |
18 |
1265 |
3192 |
4396 |
1861 |
17647 |
39 |
600 |
32 |
3938 |
|
|
5196 |
5783 |
114 |
64 |
84 |
536 |
3600 |
4101 |
179 |
1 |
44 |
20 |
c58 |
30/700/100/F/L |
45750.6 |
45751 |
1480 |
7029 |
4755 |
1838 |
17428 |
115 |
600 |
741 |
5650 |
|
|
17272 |
3992 |
700 |
7632 |
1029 |
678 |
3600 |
12345 |
111 |
17 |
274 |
214 |
c59 |
30/700/100/V/T |
2836.0 |
2836 |
2426 |
6177 |
4560 |
1894 |
17965 |
46 |
600 |
371 |
4263 |
|
|
4269 |
4201 |
1922 |
8807 |
976 |
381 |
3600 |
4801 |
258 |
6 |
270 |
229 |
c60 |
30/700/100/F/T |
9796.5 |
9797 |
1736 |
5693 |
4866 |
1706 |
16181 |
97 |
600 |
387 |
3018 |
1840 |
2266 |
7195 |
6844 |
801 |
7640 |
2109 |
191 |
3600 |
11432 |
173 |
12 |
394 |
234 |
c61 |
30/700/400/V/L |
210403.7 |
210404 |
12636 |
18446 |
24817 |
22315 |
211643 |
475 |
600 |
222 |
35241 |
45637 |
54264 |
|
18000 |
3477 |
13312 |
1938 |
105 |
3600 |
6346 |
243 |
46 |
277 |
233 |
c62 |
30/700/400/F/L |
432000.0 |
432000 |
11368 |
32753 |
69540 |
75665 |
717639 |
1783 |
600 |
860 |
21429 |
128777 |
125860 |
|
13982 |
12961 |
16947 |
2419 |
524 |
3600 |
3456 |
223 |
207 |
392 |
290 |
c63 |
30/700/400/V/T |
432000.0 |
432000 |
15880 |
19779 |
34975 |
24289 |
230367 |
749 |
600 |
365 |
15372 |
99323 |
102727 |
|
18000 |
5311 |
10743 |
8327 |
331 |
3600 |
10053 |
374 |
46 |
285 |
235 |
c64 |
30/700/400/F/T |
432000.0 |
432000 |
11660 |
29949 |
51878 |
44936 |
426196 |
1487 |
600 |
225 |
32531 |
95330 |
123233 |
|
14286 |
10800 |
13656 |
4297 |
191 |
3600 |
12343 |
428 |
71 |
307 |
267 |
Average Computation Time |
|
108209 |
108209 |
2638 |
7031 |
10817 |
9432 |
91544 |
537 |
575 |
408 |
6959 |
29283 |
32071 |
6153 |
4515 |
3135 |
6728 |
1849 |
292 |
3600 |
5241 |
153 |
24 |
208 |
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lower Bound/ Gurobi7/
120h |
|
Naoto Katayama, Working Paper, 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Upper Bound/ Gurobi7/
120h |
|
Naoto Katayama, Working Paper, 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Simplex-Based Tabu Search |
|
T. G. Crainic, M. Gendreau, and J. M.
Farvolden. A simplex-based tabu search for capacitated network design.
INFORMS journal on Computing, 12, 223-236, 2000. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cooperative
Parallel Tabu Search |
T. G. Crainic and B. Gendron. Cooperative
parallel tabu search for capacitated network design. Journal of Heuristics,
8, 601-627, 2002. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cycle-Based Neighborhoods |
|
I. Ghamlouche, T. G. Crainic, and M. Gendreau.
Cycle-based neighborhoods for fixed-charge capacitated multicommodity network
design. Operations Research, 51, 655-667, 2003. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Path Relinking |
|
I. Ghamlouche, T. G. Crainic, and M. Gendreau.
Path relinking, cycle-based neighborhoods and capacitated multicommodity
network design. Annals of Operations Research, Vol.131, 109-134, 2004. |
|
|
|
|
|
|
|
|
|
|
|
|
|
First
Multilevel Cooperative Tabu Search |
T. G. Crainic, Y. Li, M. Toulouse. A first multilevel
cooperative algorithm for capacitated multicommodity network design.
Computers & Operations Research, 33, 2602-2622, 2006. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Capacity Scaling
Heuristics |
|
N. Katayama, M. Chen, M. Kubo. A capacity scaling heuristics
for the multicommodity capacitated network design problem. Journal of
Computational and Applied Mathematics, 232, 90-101, 2009. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Local Branching
Heuristics |
|
I. Rodríguez-Marítn and J. J.
Salazar-Gonzaleza. A local branching heuristics for the capacitated
fixed-charge network design problem. Computers & Operations Research,37,
575-581, 2010. |
|
|
|
|
|
|
|
|
|
|
|
|
|
IP Search |
|
M. Hewitt, G. L. Nemhauser, and M.
Savelsbergh. Combining exact and heuristics approaches for the capacitated
fixed charge network flow problem. Journal on Computing, 22, 314-325, 2010. |
|
|
|
|
|
|
|
|
|
|
|
|
|
MIP-Tabu Search |
|
M. Chouman, T. G. Crainic. A MIP-tabu search
hybrid framework for multicommodity capacitated fixed-charge network design.
Technical Report CRT-2010-31, Centre de recherche sur les
transports,Université de Montréal, 2010. |
|
|
|
|
|
|
|
|
|
|
|
Learning
Mechanisms and Local Search Heuristics
(Node) |
I. Ghamlouche, T.G. Cainic, M. Gendreau,
Learning mechanisms and local search heuristics for the fixed charge
capacitated multicommodity network design. International Journal of Computer
Science Issues, 8(6), 21–32, 2011. |
|
|
|
|
|
|
|
|
|
|
|
Learning
Mechanisms and Local Search Heuristics
(Arc) |
I. Ghamlouche, T.G. Cainic, M. Gendreau,
Learning mechanisms and local search heuristics for the fixed charge
capacitated multicommodity network design. International Journal of Computer
Science Issues, 8(6), 21–32, 2011. |
|
|
|
|
|
|
|
|
|
|
|
Hybrid
Simulated Annealing and Simplex Method |
M. Yaghini, M. Karimi, M. Rahba, R. Akhavan, A
hybrid simulated annealing and simplex method for fixed-cost capacitated
multicommodity network design, International Journal of Applied Metaheuristic
Computing, 2(4), 13-28, 2011 |
|
|
|
|
|
|
|
|
|
|
|
Hybrid
Simulated Annealing and Column Generation Approach |
M. Yaghini, M. Rahbar, M. Karimi, A hybrid
simulated annealing and column generation approach for capacitated
multicommodity network design, Journal of the Operational Research Society,
64, 1010–1020, 2013. |
|
|
|
|
|
|
|
|
|
|
|
|
ACO-based Neighborhoods |
|
M. Yaghini and A. Foroughi, ACO-based
neighborhoods for fixed-charge capacitated multi-commodity network design
problem, International Journal of Transportation Engineering, 1, 311-334,
2014. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Combined
Capacity Scaling and Local Branching |
N. Katayama, A combined capacity scaling and
local branching approach for capacitated multi-commodity network design
problem, Far East Journal of Applied Mathematics, 92, 1-30, 2015. |
|
|
|
|
|
|
|
|
|
|
|
|
|
Cutting-Plane
Neighborhood Structure |
M. Yaghini, M. Karimi, M. Rahbar, M.H.
Sharifitabar, A cutting-plane neighborhood structure for fixed-charge
capacitated multicommodity network design problem, INFORMS Journal on
Computing, 27(1), 48–58, 2015. |
|
|
|
|
|
|
|
|
|
|
|
Genetic
Algorithm Based on Relaxation Induced Neighborhood Search |
M. Momeni, M. Sarmadi, A Genetic Algorithm
Based on Relaxation Induced Neighborhood Search in a Local Branching
Framework for Capacitated Multicommodity Network Design, Networks and Spatial
Economics, 16(2), 447-468, 2016. |
|
|
|
|
|
|
|
|
|
|
Iterative
Linear Programming-based Heuristics |
B. Gendron, S. Hanafi, R. Todosijević, An
Efficient Matheuristic for the Multicommodity Fixed-Charge Network Design
Problem, IFAC-PapersOnLine, 49(12), 117-120,2016. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Cycle-based
Evolutionary Algorithm |
DC. Paraskevopoulos, T. Bektas, T. Crainic,
and CN. Potts. A cycle-based evolutionary algorithm for the fixed-charge
capacitated multi-commodity network design problem, European Journal of
Operational Research, 253(2), 265-279, 2016. |
|
|
|
|
|
|
|
|
|
|
Parallel Local Search |
|
L.M. Munguía, S. Ahmed, D.A. Bader, G.L.
Nemhauser, V. Goel, Y. Shao, A parallel local search framework for the
Fixed-Charge Multicommodity Network Flow problem, Computers & Operations
Research, 77, 44-57, 2017. |
|
|
|
|
|
|
|
|
|
|
|
Capacity
Scaling and Greedy Heuristics |
N.Katayama, A Combined Fast Greedy Heuristic
for the Capacitated Multicommodity Network Design Problem, Working Paper,
2017. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Capacity
Scaling and MIP Neighborhood Search |
Naoto Katayama, Working Paper, 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Tuned Capacity
Scaling and MIP Neighborhood Search |
Naoto Katayama, Working Paper, 2018 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|